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FOREWORD

The Thirty-Third Conference on the Design of Experiments in Army
Research, Development, and Testing was held 21-23 October 1987 on the
campus of the University of Delaware. This university served as one of
its hosts, the other host heing the Ballistic Research Laboratory
(BRL)s Professor Henry B, Tingey was the Chairperson on Local
Arrangements for the University and Dr. Malcolm Taylor served in this
capacity of BRL. The members of the Army Mathematics Steering
Committee (AMSC), sponsors of these conferences, would like to take
this opportunity to thank these gentlemen for their excellent handling
of the many problems associated with a meeting of this size.

Members of the Program Committee for the conference were pleased to
obtain the services of the following invited speakers to talk on topics
of interest to Army personnel:

Speaker and Affiliation Title of Address

Dr. J. Stuart Hunter Statistics and the Learning

Private Consultant Process

Professor Albert Paulson A Generalized Likelthonod

Rensselaer Polytechnic Institute Approach to Experimental
Design, Data Analysis and
Modeling

Dr. William A. Gale Structural Statistical

Bell Communications Research Knowledge for Expert Systems

Professor Howard M, Taylor The Effect of Size on

University of Delaware Material Strength

On 19-20 October 1987, two days before the start of the Desiyn
Conference, & tutorial entitied "Regression Diagnostics" was held. Its
speaker was Professor Roy Welsch of the Massachusetts Institute of
Technology, Cambridge, MA. The main purpose of these seminars was to
develop, in Army scientists, an interest in and and appreciation for
the statistical methods that are needed to analyze experimental data.

Or, J. Stuart Hunter, Professor Emeritus of Princeton University, was
the recipient of the seventh Wilks Award for contributions to
Statistical Methodologies in Army Research, Development, and Testing.
This honor was bestowed on Dr. Hunter for his many significant
contributions to various fields of statistics, in particular to the
areas of fractional factorial and response surface experimental design.
He has assisted many Army scientists with thelr statistical problems,
and has been an invited speaker at four of these Design conferences.

1114

R ~

LY hé\‘/:;- g:( 0%
A 1’?]':.!."_‘;‘: 1‘!‘1‘:5%!1’:!! N

R ey g :@gﬁ‘. N Q‘: l:"':“' Vi

Ot 5 ' aY AR AYS
IR T TR MR TS NSRS

o
SR

IR
DO
UGN

.‘ l.:.:::‘
{4 M)
R

g
....B.Q.I'
o4

J
, &
U

()
U



The AMSC has requested that these transactions be published and
distributed Army-wide so that the information in them might assist Army
scientists with some of their statistical problems. Committee members
would 1ike to thank all the speakers for their interesting
presentations and also the members of the Program Committee for their
many contributions to this scientific meeting.

PROGRAM COMMITTEE

Carl Bates David Cruess : Eugene Dutoit

Robert Launer Carl Russell Douglas Tang

Malcoim Taylor Jerry Thomas Henry Tingey
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AGENDA
THIRTY-THIRD CONFERENCE ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING
21-23 October 1987

Hosts: The Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

and

The Dapartment of Mathematical Sciences
The University of Delaware

Newark, Delaware

Location: Pencader Hall, Room 106
The University of Delaware

* % ® & & Wednesday, 21 Octcober » * » » #
0815-0915 REGISTRATION - Clayton Hall Lobby
0915-0930 CALL TO ORDER ~ Pencader Hall, Room 106
Dr. Malcolm Taylor, Ballistic Research Laboratory
OPENING REMARKS |

Dr John T Frasier
Director, Ballistic Research Laboratory

WELCOMING REMARKS

Or Ivar Stakgold

Chairman, Department of Mathematical Sciences
The University of Delaware

0930-1200 GENERAL SESSION I

Chairman: Prof Henry B Tingey, University of Delaware
0930-~1030 KEYNOTE ADDRESS

J Stuart Hunter, Princeton, NJ
1030-1100  BREAK b

Y/ I‘

1100-1200 A BAYESIAN APPROACH TO THE DESIGN AND ANALYSIS OF v"§":
COMPUTATIONAL EXPERIMENTS _!;‘r

. (3

Toby J Mitchell* and Max Morris, Oak Ridge National Labs ;&‘q@

1200-1330 LUNCH
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o
1330-1700  CLINICAL SESSION A ‘:;:::
o
Chairman: Barry Bodt, Ballistic Research Laboratory :,::E
Panelists: Prof John Green ?
Prof Vincent LaRiccia R
Prof John Schuenemeyer N
Prof Robert Stark KX
Prof Howard Taylor 0
The Defartmnt of Mathematical Sciences i
The University of Delaware ¥
Oy
ANALYSIS OF A REPEATED DESIGN WITH MISSING CELLS '.Z;E;Z
O
Michelle R Sams and Joel H Fernandez, White Sands Missile Range EE%:%
\ .91*?
ALTERNATIVE METHODS FOR RELIABILITY ESTIMATION I
Plé.d,"l
Raymond V Spring, US Army Natick ReD Directorate ~ e
Thomas A Mazzuchi, The George Washington University ::.;;;;
o,
ALLOCATION AND DISTRIBUTION OF 155 MM HOWITZER FIRE v
Ann E M Brodeen and Wendy A Winner, ::,.";
The Ballistic Research Laboratory ,;.:,:.\
.H‘Q’“;
1500-1530  Break (as needed) '&: )
A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION OF IR BACKGROUNDS 'fi%;;;
Denis F Strenzwilk, Ballistic Research Laboratory ,ﬁg‘:ﬁ
Walter T Federer and Michael T Meredith, Cornell University ::' :*.
ey
1530-1700 CLINICAL SESSION A, CONTINUED (as needed) E:E%:;j
e
1830-1930 CASH BAR - THE SHERATON INN, NEWARK :}““"x:
\'q (!
1930~2130  BANQUET AND PRESENTATION OF WILKS AWARD - THE SHERATON INN ,!g!a'.f;
QA ‘.'
* % % » *» Thursday, 22 October * * % * * ::'.;.E::)'
L
0830-1000 TECHNICAL SESSION 1 - STATISTICAL APPLICATIONS
I"'I'g
Chairman: Dr Francis Dressel, US Army Research Office E;.'.:E::;
G I'c.
EVALUATION OF CAMOUFLAGE PAINT GLOSS VERSUS DETECTION RANGE ':2;:::5
et
George Anitole and Ronald L Johnson, US Army Belvoir Research, ?.
Development and Engineering Center Yo
Christopher J Neubert, US Army Materiel Command :::::,'),r
) l.:
A 2-STAGE EXPERIMENTAL DFSIGN FOR TESTING LARGE SCALE SIMULATIONS "::ég::
)
Aqeel A Kahn, US Army Concepts Analysis Agency . -
e
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BLACK BRANT HAZARD ANALYSIS
E Weston C Wolff, White Sands Missile Range
USING A PERSONAL COMPUTER IN STATISTICAL PLANNING AND ANALYSIS
Carl Russell, Army Operational Test and Evaluation Agency
1000~1030 UREAK
1030-1200 TECHNICAL SESSION 2, EXPERIMENT DESIGN AND LINEAR MODELS
Chairman: William Baker, Ballistic Research Laboratory
ONE SIDED TOLERANCE LIMITY FOR RANDOM EFFECTS MODELS
Mark vangel, US Army Material Testing Laboratory

ESTIMATION OF VARIANCE COMPONENTS AND MODEL~BASED DIAGNOSTICS IN
A REPEATED MEASURES DESIGN

Jock O Grynovicki, US Army Human Engineering Laboratory, APG
J W Green, The Uhiversity of Delaware

MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS IN A GENERAL
MIXED LINEAR MODEL

John W Green, The University of Delaware
R R Hocking, The Texas A&M University

CHANGE-POINT REGRESSION WITH UNKNCOWN CHANGE POINTS

Rotert L. Launer, US Army Research Office
1200-1330 Lunch

1330-1500 TECHNICAL SESSION 3 ~ STOCHASTIC PROCESSES
Chairman: DOcr Eugene Dutoit, US Army Infantry School
SEMIREGENERATIVE PHENOMENA

N U Prabhu, Cornell University

k-LAPLACE PROCESSES

Lee S Dewals, The US Military Academy

Peter A W Lewis, Naval Postgraduate School

Ed McKenzie, University of Strathclyde, Glascow, Scotland

THEORY OF RANDOM MAPPINGS

Bernard Harris, University of Wisconsin - Madison
1500-1530 BREAK
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X 1530-1730  GENERAL SESSION II
Chairman: Dr Malcolm S Taylor, Ballistic Research Laboratory

0 A GENERALIZED LIKELIHOOD APPROACH TO EXPERTMENTAL DESIGN,
i DATA ANALYSIS AND MODELING

& Albert bPaulson, Rensselaer Polytechnic Institute

I STRUCTURING STATISTICAL KNOALEDGE FOR EXPERT SYSTEMS
< William A Gale, Bell Communications Research
0 * % % & % Friday, 23 October » * * % «

0830-1000 TECHNICAL SESSION 4 - STATISTICAL INFERENCE

%i Chairman: Linda Moss, Ballistic Research Laboratory
a ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL
Oskar M Egsenwanger, US Army Missile Command

:: CONSISTENCY OF THE P-VALUE AND A SET OF Q-VALUES IN A SCORING
i ACCURACY ANALYSIS

o Paul Thrasher, White Sands Missile Range
A BAYESIAN METHOD FCR PROJECTING A TOLERANCE LIMIT
Donald Neal and John Reardon, US Army Material Testing Laboratory

COVERING PROBABILITY PROPERTIES OF COMPETING CONFIDENCE INTERVAL
METHODS FOR THE RISK RATIO

R Craig Morrissette* and Douglas B Tang, Walter Reed Army Institute
» of Research
[
;:: 1030-1045  BREAK
)
1045-1200 GENERAL SESSION III
$ Chairman: Dr Douglas B Tang, Walter Reed Armgarnstitute of Research
B Chairman of the AMSC Subcommittee on Probability and Statistics

:'. 1045-1100 OPEN MEETING OF THE STATISTICS AND PROBABILITY SUBCOMMITTEE
' OF THE ARMY MATHEMATICS STEERING COMMITTEE

" 1100-1200  THE EFFECT OF SIZE ON MATERIAL STRENGTH
) Howard M Taylor, University of Delaware
ADJOURN
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ANALYSIS OF A REPEATED MEASURES DESIGN WITH MISSING DATA

Michelle R. Sams and Joel H, Fernandez
U.S., Army Materiel Test and Evaluation/
Engineering and Analysis RAM Division

U.S, Army White Sands Missile Range, NM 88002-5175

ABSTRACT

Electronic Maintenance Publication System (EMPS) is a U.S.
Army Materiel Command (USAMC) initiative to determine the
feasibility of using current technology to electronically display
and deliver the <contents of Department of the Army Technical
Manuals (DATMs) to the maintenance site. The Army Materiel Test
and Evaluation Directorate (ARMTE) was tasked to conduct a "side~
by-side" comparison of EMPS vs., DATMs and to conduct a human
factors evaluation of the EMPS hardware and software. ARMTE
conducted the comparison study on the Patriot System at Ft, Bliss,
TX from 6 April to 15 May 1987, Ten operator/maintainers (MOS
24T) were trained to use EMPS and then participated in the test
phase performing maintenance tasks on the Radar Set (RS) and on
the Engagement Control Station (ECS), A 2 x 2 x 7 within-subjects
factorial design was planned, with 2 mediums (EMPS, DATMs)
performed on 2 major end items (RS, ECS) for 7 types of
maintenance tasks. Due to software constraints and Patriot
paculiar problems, only 8 of the 28 possible treatment conditions
have observations from all the subjects and 2 of the treatment

conditions have no observations, Various data estimation
procedures were considered and then rejected on the basis of
excessive and systematic missing data. Two analyses of variance

were conducted on a subset of the original data, which contained
the 1least amount of missing data and were determined to be
representative of the maintenance actions, No significant
difference was found for the variables of interest (those
involving EMPS and DATMs). Based on the results of this study, it
was concluded that there is no evidence to suggest that there 1is
any significant difference in time to perform a fault isolation or
remove and install task on the PATRIOT system wutilizing either
EMPS or DATMs, An electronic delivery of maintenance information
(as tested in EMPS) appears to be as effective as the traditional
medium of paper technical manuals (DATMs).

—— -

Comments and suggestions by the panelists and attendees at the
conference were greatly appreciated. We are especially indebted to
N. Scott Urquhart of New Mexico State University for his guidance
throughout the completion of the data analysis,
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7 INTRODUCTION

Maintainability is a major element of system effectiveness.

}5 As such, the delivery of maintenance information is a <crucial
;? component in the man-machine systenm, The current delivery medium
¥$ ls through paper technical manuals (DATMs). Many problems have
gﬁ been noted with the paper manuals (e.g., the large number of bulky 3
§ manuals needed to contain all the information and difficulties é'
gt encountered keeping the manuals updated and current, the %
;S difficulty wusing the manuals especially in 1inclement weather, ﬁ
ég etc.) An alternative delivery medium was sought and tested in the %
ﬁi form of Electronic Maintenance Publication System (EMPS). As part %
ﬁ of a larger evaluation of EMPS, the Army Materiel Test and ﬁ
'%I Evaluation Directorate at White Sands Missile Range was tasked to -ﬁ?
ﬁ! conduct a performance ("side-by-side") comparison of EMPS vs, %
gs DATMs and to conduct a human factors evaluation. The performance ‘3
Eﬁ evaluation was based on the speed and accuracy of maintenance 'ﬁ
" actions for the two mediums and is presented in this paper. X
i
o o
" METHOD 0
: ;
5 Subject and Team Selection X
ﬁ A total of ten operator/maintainers (ell trained to the T5 3
? PFAS level) were allotted for the study on the basis of §
K/ availability, Maintenance tasks are normally performed in F
g maintenance teams consisting of a "reader" and a "doer". For the é
: purposes of this study, the ten subjects were divided into two ,}
% groups on the basis of their GT scores (an 1index of general ;;
$ intelligence and ability). Five teams were then formed out of eacp m
ﬁé group (each subject participated in two teams). FEach team from é
AN "O
I . 2 ;
X q ﬁss “ > N3l NP .
B e ?.**-?i

..."I X ' 3 .l..~ hah, " ‘ h"' ."‘.



Group A was then matclied with & team from Group B with 3&
approximately the same GT level, This matching was done in order %ﬁ
to reduce somne of the variance dve to the subjects, especially $§
since there was such a small number of subjects in the experiment. ﬁ%

Experimental Design

A 2 x 2 x 7 within-subjects factorial design was ©planned, $&

l“|a \'\":

with 2 mediums (EMPS, DATMs) performed on 2 major end items (RS, k§
ECS) for 7 types of maintenance tasks, The design was within- -

subjects in that all teams would participate under all treatment

combinations. However, due to the concern of possible gm;
asymmetrical transfer effects, a particular team did not ;;S
participate in the same task twi:e. For example, when a team ﬁ?
performed a particular task utilizing EMPS, a different team ﬁg
matched for general ability performed the same task wutilizing ;?A
paper DATMs, A%ﬁ
Task Selection %ﬁ
With the assistance of subject matter experts, it was Q%
determined that there were seven types of maintenance actions ‘%%
performed on the RS and ECS. These task types consisted of fault ﬁﬁ
isolation (FI), remove and install (RI), repair and verify (RV), :;ﬂ
combined tasks (CO0) which included FI, RI, and RV times, %&
preventive maintenance checks and services (PMCS), operations ‘§E
(OP), and repair parts and special tools 1list (RPSTL). The .39
selection of the specific tasks to be performed was influenced by ;?f.
several factors; software capability, the tasks had to be ?ﬂ
representative of normal maintenance actions, and the concern of r%
face validity. ::.:E:::
i
R
’ w;.-a
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Ten operator/maintainers were familiarized with EMPS in the
c¢lassroom and given support documentation., They then participated
in an on-site training session in their assigned teams, A total
of 63 maintenance tasks on the RS and ECS utilizing both EMPS and
DATMs were completed in this session.

Testing Session

The teams then participated in the test phase performing a
total of 302 separate maintenance actions consisting of the seven
types of maintenance actions on the RS and ECS utilizing both EMPS
and DATMs.

Data Collection

The errors committed and the total time to complete a
maintenance action were recorded by a data collector for each

task. A particular data collector would record data for the same

task, performed once by a team utilizing EMPS and again by a

matched team utilizing DATMs. This was done to reduce variation in

the time and error measurements recorded among the data collectors.

Reduction of the Full Factorial Design

Each team was to participate in an equal number of tasks
utilizing the two mediums on both major end items for all task
types. Halfway through the test phase, it became obvious that due
to equipment failure and frequent removal of the subjects for
field training exercises, that the full factorial would not be
completed as originally planned. Even though generalizability of
the results to all types of maintenance actions was a concern, it
was determined that those tasks which best utilized the DATMs and

EMPS would be an accurate indicator of the efficiency and
4
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feasibility of the mediums.

Through discussions with subject matter experts and the
participating subjects, it was determined that two types of tasks
best wutilized the two mediums, These were fault isolation (FI)
and remove and install (RI). These tasks were complex enough to
compel the maintainer to actually read and refer to the
maintenance material. The other tasks were simple and routine, Bo
that close attention to either medium was not necessary (although
they were instructed to actually read and use both mediums in any
circumstance). Within the remaining test phase time, the test
schedule was revised to include more of the FI and RI type tasks.
As a result, there was a large amount of missing data in the other
four types of tasks. The seventh task (RPSTL) was conducted only

on the ECS, due to software problems, and is not reported here.

RESULTS AND DATA ANALYSIS

A summary of the data collected for meintenance action times
is presented in Table 1 and a means bar chart 1s presented 1in
Figure 1. There are 81 missing observations out of a total »f 240.
Estimating the missing data would allow investigation of 3-way
interactions (type of task x item x medium) and allow

generalization to all types of tasks tested, Various data

estimation procedures were investigated, with employing stepwise

regression for each missing value on the available variables

WA
appearing as the most appropriate method (Frane, 1976), iég
Frane (1976) cautions that the methods for estimating missing L

data for multivariate analysis depend on several assumptions:
5 [ )
0 LA
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utilizing EMPS and paper DATMs. The number in the upper right-hand comer of each cell indicates the

Team

1-2
2-3
3-4

45

6-7

7-8
8-9

10-6

910
Table 1

%
Reduced time data (in min) collected from six types of maintenance actions on two major end items

the number of observations per cell.
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(continued)

Table 1.

Team

7-8
8-9

1-2

3-4

|

4-5

RADAR SET
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U N
R "f.s"':‘:'e'ﬂ'n"'e‘

RV

63

*

7w | 910

1.53

k3
||

»

k2

5690| 15| 67

0.933F

963 | 1221 10-6

8.96

i 8

20.01 | 128

3704 | .67

»

207 | 1.5

265 | 8527

»

)

»

247

352 { 4.07

Paper DATMs

»

*

]

*

.48

»

»

»

2

3
2

2

264

¢ A

]

528

1

270

4
|

3.09

4.8

EMPS

CO| AR |OP| PM] HI

*

A

80 | 1228 | 251

60 } w075 | 502

14.08

-

*

2

' (4

*

~ 1

4036| 150 13322 199 | 285

2
9.34
T

b J
1289
'

953

3

10.56

z

16.72

Y

2530 14 823 | 243

2

*

13

195 | 66.27

*

»

%

*

»

23 |3 )] S8

3220 | 1943

oP| PM | RI

1)

*

»

»

*

*

*

Fl

2

144 | 493

3
208
I

205

400 | 62

b
h |

2

299

Cco

\

B’

752 | 30

14.92

1403 | 423

1%.44 | 3.08

212 | 268

Yeam

1-2

3-4

4-5

5-1

67

7-8
8-9

10-6

_ Rv

!

]

— 45 § W -

*

'

- .
. 1

g )
3

E

. ]
*

2 Group A consisted of subjects 1-5, Group B consisted of subjects 6-10 Subjects were assigned 10 two teams within each group

*
¥ No data was collected for this cell.
(i.e., subject #1 participated in teams “1-2° and "5-1").

9-10

ORR

)
A

MY O

(N 8 4
R R A 2

N

Sl
SN,

A

AONS

N

L
w
A}

N )
.\A ’(‘.o. 5 (“
x*\ gi\ b ha bl

N

s
TR et
RS ) () )

B



' EAE S e B e S S e e B e e B S

ions utilizing EMPS and DATMs.

L)
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' 0.9,

DATMs
TYPE OF TASK

EMPS

Comparison of mean times collected from six types of maintenance

Figure 1.
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data must be missing at random to get a good estimate of the E':ﬁ
covariance matrix, each missing variable must be highly correlated ﬂ
with one or more available variables, and the amount of missing >j°::€::
data should not be excessive. If any of the assumptions are §§§
seriously violated, any procedure for handling missing data 1is ?ﬁ?
likely to be unsatisfactory. The data collected in the study E?%
violated two of these assumptions; the missing data was excessive éﬁy
and systematic, ﬁ i
o
It was determined not to make estimetions of the missing i&;
observations and to instead conduct separate analyses of variance %ﬁy
on the two types of tasks ( FI and RI) which contained the least Eﬁg
amount of missing data, and which were previously determined to ?ﬁi
best test the variables of interest, Since the data approximated a g@i
lognormal distribution, the data was transformed ((log (X + 1)) to ﬂﬁf
normalize the distribution (Winer, 1971)., The transformed Egg
maintenance times were subjected to the analyses of variance 'ﬁﬁ
presented in Tables 2 and 3, Egi
A significant difference for maintenance time for the "ﬁi
different tasks within each item was found, (p < .01), for both g:é;:
types of tasks, This was neither surprising, nor of interest. "“‘“
The set of tasks performed on each item varied in difficulty. For r"‘::a
fault isolation tasks a significant difference was found for item, l::‘:::
(p ¢ .01). It took longer to perform fault isolation tasks on the \‘“
ECS than on the RS, Again this was not a variable of interest, éﬁﬁ
and most likely eflects the relative complexity of the the items. :E‘:,:.'.:'E
The variables of interest, those involving the two mediums 'f
being compared (EMPS and DATMs) revealed no significant qiﬁ
differences, in maintenance time (p > .10). Also there was no ,:-:.::F
S
O w.‘a Mt .‘J-‘J.‘J Lot ‘J. VRRRRRR .u.,'a R .l.a...‘a..'a.u!. R AT .u.c' .



Table 2
ANOVA Table for Fault Isolation Tasks using Log Transformed Time

v - 5w SR b M A SN S R G A R D M e e R M G A M MR EE N M e A S e men S R et e G e S e e SR e ST M S e S e -

Source df MS F
Betwveen Subject 43
Group 1 .007 0.21
Task(Item) 21 497 14,62 "w
Error (Between) 21 034
Within Subject 46
Medium 1 .083 0.82
Item 1 2,930 29,01 %%
Medium X Item 1 .003 0.03
Error (Within) 43 0,101
TOTAL 89
¥ p < .01
Table 3
ANOVA Table for Remove and Instell Tasks using Log Transformed
Time
Source df MS F e
--------------------------------------------------------------- ‘.';-‘,
Between Subject 45 $$;
ek
Group 1 046 1.24 b
Task(Item) 22 1.661 44,42 %n o
@
Error (Between) 22 ,037 §$}
.I'Q.l
Within Subject 36 kﬁi
)
o
Medium 1 044 0.73 oy
Item 1 .012 0.20 [
Medium X Item 1 .025 0.42 Jﬁ-
A
Error (Within) 33 0.060 'y
e
TOTAL 81 o
¥F p < .01 0
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significant difference in group performance for either type of gﬁ%

task. Thus the various teams composed from each group were ~§§3
matched fairly well on ability to perform the tasks. gg

Errors committed while performing the maintenance tasks were %%*

negligible and were not subjected to statistical analysis. %&s_

e

CONCLUSION "«;

Based on the results of this study, there is no evidence to 2; Z
suggest that there 1s any significant difference in time to ?;n

perform fault isolation and remove and install maintenance actions E%ﬁ,

on the PATRIOT system utilizing either EMPS or DATMs. Errors made ﬁgﬁ

while using either medium were negligible and are not a %::1

significant factor either. An electronic delivery of maintenance 53%

information (as tested in EMPS) appears to be as effective as the SEE':':EEE

traditional medium of peper technical manuals (DATMs). gsg

These are encouraging results considering that the test ggg

subjects had a very "quick and dirty" training period with the g}é

EMPS system, It 1is concelvable that the speed with which a %;;

maintenance action can be performed with an electronic delivery of g%%

maintenance information will improve with a more comprehensive %&&

training approach and with Human Engineering improvements to the ‘gw

)

system, 'i.:’::%

B
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Abstract :i_a“

i

The U.S. Army Ballistic Research Laboratory (BRL), Aberdeen G}:;:::‘

Proving Ground, MD, bas been investigating the problems associ- e

ated with allocating and distributing friendly fire based on the e

importance of an enemy target and its function in a particular tac- T

tical situation. The available data contain nonstandard data struc. o

tures, numerous variables with various degrees of influence on the e

predictive relationship, a mixture of data types, and nonhomogene- Rk

ous variable relationships. Various approaches including parametric e

and nonparametric procedures have been applied to this problem. ) M

As an alternative to standard parametric procedures, the BRL is G

investigating recently published classification tree methodology '.:v:::\

which extends previous developments in this area [1). Similar to .:::::v‘

other classification tree methodologies, this methodology provides -;‘-::i

predictions by constructing binary trees. However, unlike other i
analytical techmiques, e.g., cluster analysis, linear discriminant X

analysis, and earlier classification trees, Breiman et al's .-,-5

classification tree structured methods concurrently handle these }‘,{t

problems, which are common to the data collected by the BRL on Kt
Fire Direction Officers’ decisions on 155mm howitzer targets. '

The authors would like to solicit critiques of the proposed :'R:

approach Lo this problem and suggestions for alternatives, ::-:%‘:
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. 1. Introduction i
?i‘ o
g o
-y The U.S. Army Ballistic Research Laboratory (BRL) has been examining the prob- ?5’
“ lems associated with selecting the type, volume, and the method of firing ammunition -
" on enemy targets by a specific 155mm howitzer firing configuration, i.e., the allocation -;'2;
N and distribution of friendly fre. This research is concentrating on allocating and distri- ~:'.;
B buting the fire of 155mm howitzer firing units based on the importance of an enemy tar- by
o get and its function in a particular tactical situation. Results from this research will be o
incorporated into the BRL's prototype decision aid FireAdvisor. As a tool for developing ﬂf
) and implementing fire support plans, FireAdvisor is incorporating commander's criteria, g:;.
7.:‘; munition effects, and the tactical situation (including fring units, munitions, fuzes, and e
o targets) to assiet with determining the optimum allocation and distribution of fire ]
against independent targets over time. .
=
@ To acquire data for this research, the BRL conducted a statistically designed exper- 7
A iment, the Firepower Control Experiment, in December 1985. In addition, the BRL has ::J
J‘} recently extracted similar information from scenarios developed by LB&M Associates, oy
0 Ine., Lawton, OK, under a BRL contract. Both of these data sets are characterized by a : i::-
e mixture of data types, nonhomogeneous variable relationships, and different degrees of -
v influence of the variables. Various approaches such as multiple regression analysis, the o
" Mann-Whitney test, Kruskal-Wallis analysis of variance by ranks, and cluster analysis ;3:;
o have been applied to analyze the data from the Firepower Control Experiment. The o
;-‘.T: goals of these procedures were to uncover the relationships among the variables and pro- o
! vide accurate predictions for allocating and distributing 156mm howitzer fire, "&,
;; As an alternative to standard parametric procedures, the BRL is investigating :::;
;: employing a recently published classification tres methodology to these data sets [l). :*;i«
o Similar to other published classification tree methodologies, Breiman et al.'s methodol- ‘,a‘;'.
! ogy provides predictions by constructing binary trecs. However, unlike other analytical o8
. techniques, Breiman et al.'s classification tree structured methods concurrently handle o
o nonstandard data structures, a mixture of data types, nonhomogeneous variable rela- '.::
o tionships, and different degrees of influence of the variables. ::::
» e
" An overview of Breiman ¢t al.'s methodology will be given in the context of allocat- ::
’ ing and distributing 155mm howitzer fire. Critiques of this proposed approach and
:. suggestions for a'ternative approaches are invited. ~
’ ..l
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e Fire Direction Officer [FDO) (determines or approves the number of
s rounds and the shell/fuze combination to fire on the target)

e Type/Subtype (description of the type of target)
e.g., artillery /medium.

e Size (iD meters),

¢ Method of Engagement (how to fire on the target)
e.g., fire-for-eflect when ready.

e Degree of Protection (position of the target)
e.g., standing on first volley and laying down on subsequent volleys.

e Strength (number of units comprising the target)
e Target Speed (in kilometers per hour)

e Sensor (friendly unit sighting the target)
e.g., forward observer,

e  Scnsor Speed (in kilometers per hour)
¢ Scnsor to Target Range (in meters)
e 155mm Howitzer to Target Range (in meters)

¢ Ammunition Available (both as number of rounds available by munition type and as the
initia] ammunition load expressed as a percentage of a basic load)
e.g., 100 rounds of high explosive rounds which is x% of a basic load.

¢ Allocation Method (method of firing the rounds on a target)
e.g. fire high explosive and smoke rounds simultaneously on the target
[as opposed to firing all high explosive rounds first followed
by the smoke rounds).

¢ Total Number of Rounds Fired on the Target (number)

¢ Number of First Munition Rounds Fired
e.g., 6 rounds of high explosive.

e Type of First Munition Fired
e.g.. high explosive,

¢ Number of Second Munition Rounds Fired
c.g., & rounds of smoke,

e Type of Second Munition Fired
e.g., smoke.

Figure 1. Information Avallable for Each Declsion.
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' II. Background

a. Data Sets

In December 1985, the BRL conducted a controlled laboratory experiment, the
Firepower Control Experiment [2], at the joint U.S. Human Engineering Laboratory and
BRL Command Post Exercise Research Facility. As part of this statistically designed
experiment, information was collected on Fire Direction Officers’ (FDOs') decisions on a
variety of targets being forwarded to 1565mm howitzer units.* This data set comprises
3,219 FDOs' tactical fire control decisions collected for different FDOs, targot
types/subtypes, target sizes, types of fire mission control (i.e., "method of engagement”)
and initinl ammunition basic loads.

As part of the BRL's research in tactical computer science, several unclassified
scenarios between friendly and enemy forces in the Fulda Gap have been developed
under A BRL contract with LB&M Associates, Inc., Lawton, OK. Embedded within
‘ these scenarios are decisions on allocating and distributing 155mm howitzer fire on
independent targets observed in one-hour periods. To date, information associated with
522 tactical fire control decisions has been extracted from a portion of these scenarios.

f Figure 1 summarizes the type of information available for the decisions in these
! data scts, A combination of categorical and numerical variables describes the principle
‘ factors thought to influence the decision process (FDO through ammunition available) as
well as the actual decision (allocation method through type of second munition fired).
Based on the results of previous data analyses, it is anticipated that these variables have
different degrees of influence and exhibit nonhomogeneity.

, b. Parametric and Nonparametric Procedures Applied

1. Multiple Regression Analysls

' Multiple regression analysis [3) is an analytical methodology that usually has one of
the following primary goals: 1) predict the value of the dependent variable for new
values of the independent variables, 2) screen variables to detect each variable's degree
of importance in explaining the variation in response, 3) specify the functional form of
the model, or 4) provide estimates of each coefficient's magnitude and sign. By applying
multiple regression analysis to the data from the Firepower Control Experiment, it was
hoped that a regression equation could be derived to suitably predict the allocation .
method. Using a combination of indicator factors for the categorical variables {e.g., FDO
and target type/subtype) and untransformed values for the numerical variables (e.q.,
ammunition load expressed as a percentage of a basic load, target size, and the methaod
of engagement), stepwise and "best subsct” regressions were run to predict the resjonse
factor (e.g., the allocation method).

"r.cum Fire Direction and guonery instructors from the US Army Field Artillery School, Fort Sill, OK, participated sy FDOs
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Stepwise regression [4] was run to insert factors into the regression cquation based '.':E::‘?
on their partial correlation coefficient with the response factor. At each step, the partial :?:',:;g'
F critcrion of each regressor already in the equation was compared to the appropriate faad.
tabled F value. The regressor was either retained in the equation or rejected based on 5
whether the test was significant or not. Stepping continued until none of the regressors KA
could be removed, and none of the other potential regressors could be inserted duce to :::::::i:;
the value of their partial correlation coefficient. "Best subset” regression was then run ::2':::‘”2
on the stepwise regressor variables to determine the best overall subset out of all pussi- :::::ﬁ:?
ble regressions according to the maximum R? criterion. ! "W
WK
As a consequence of performing a least squares fit of the data, fitted equations were ::';3::535
obtained for the allocation method. However, based on the proportion of variance r:;"ﬁ:ﬁv?i
accounied for by the regressors in the regression equations, none of the facturs clearly ':E;‘f.gi.
influenced the allocation method. This suggests that other factors not taken into ".lh';
account may influence FDOs' decisions on an allocation method. ;.w.,q;‘,
(A l‘.‘!
2. Mann-Whitney test :’,S::E?::E:_'
e
vty
One of the objectives of the experiment was to test whether the amount of avail- N.
able ammunition affected the number of rounds the FDO elected to fire on a target. °:;:¥§;§v2
Prior to comparing all FDOs within a given ammunition basic load or comparing an ;?2;7:’:‘5:
individual FDO across the three ammunition basic loads, it was desirable to first exam- :;::::Zﬁ'
ine whether or not it would be necessary to distinguish between the adjust fire (AF) and ,:‘:‘;3*:‘5'
fire-for-effect (FFE) methods of engagement. Since the distribution of total rounds fired m
against a target is not known for the two employed methods of engaging a target, the i
nonparametric Mann-Whitney test [5] was used to test whether the two independint .:;5.;:}1
random samples could have been drawn from two populations having similar distribu- e
tion functions. Based on the results of the Mann-Whitney test, the samples associated \:::-::'?
with the two methods of engagement could not be grouped together for other statistical ,ﬂ. ":
tosts. ng;::*,:.;
AN
3. Kruskal-Wallls Test :E:?;:,:E:l
R
e
Similar to the Mann-Whitney test, the nonparan.etric Kruskal-Wallis one-factor -
analysis of variance by ranks procedure [5] was used to examine, first, the mean number '::‘
of rounds fired within each of the three different ammunition basic loads by each FDO, ':ffc::
and, second, the mean number of rounds fired by each of the three FDOs within a given P .::
smmunition basic load. It was concluded from the test that there were significant :"‘
differences within an ammunition basic load in the mean number of rounds fired by each - A
FDO against an individual target. In addition, test results showed that only one of the '-J,,.':;:i
FDOs tended to fire on average more rounds against a target under at least one of the "}3,‘:‘:‘:4
ammunition basic loads than under at least one of the other basic loads. For the ran- iy $§
dom samples resulting in rejection of the null hypotheses, i.e., no difference in the mean t‘f':f
rounds fired against a single target, additional pairwise Kruskal-Wallis tests were per- o
formed. R
o
N
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4. Cluster Analysis

P IR

Cluster analysis [6] was employed to categorize targets according to their impor-
tance based on their contribution to an enemy force in a particular tactical situation,
i.e., their target value [7]. There are several ways to measure the value of the target.
For example, one way could be to use several variables to measure the deseription, loca- s
tion, and activity of the target. A description of the target might include its
type/subtype, size, and degree of protection. The location of the target might consider
the actual grid location of the target, the altitude of the target, and the distanre
between the target and specific friendly units. The activity of the target might take into
account its velocity and direction of mo:ement.

g C'luster analysis provided a multivariate statistical method to examine the interrela- o
. tionships botween the target description, the FDOs, and the initial ammunition load o
expressed as a percentage of a basic load. Target value was based on the mean nuniher &
. of rounds expended against an individual target. Targets were categorized into three o,
X target value clusters, i.e., "low”, "fair”, or "high”, based on the minimization of the o
Kt Euclidean distance between each target and the mean of the targets in the cluster, ';2‘;'
b
) ¢. Deficlencles Among the Analyses o
i Despite the fact that each of these statistical procedures is well known and used, E(,e
S they have scveral shortcomings with regard to the problems inherent to the Firepower ;::l
! Con(.ol Experiment data set. For instance, these methods do not concurrently handle e
. the nonstandard data structures, a mixture of data types, nonhomogeneous variable 3
N relationships, and different degrees of influence of the variables. Subsequently, it is aga;
‘ expected some information has been lost. ;.f,;
P (X}
= ‘I‘:c
e Thus, the combined results of these procedures do not provide an effective means of K
_ allocating and distributing 155mm howitzer fire for enemy targets. For instance, cluster o«
. analysis provides a coarse evaluation of a target's value based on the initial ammunition ::::
K load, iis type/subtype, and FDO. The "best subset” multiple regression equations pro- ,:;'.
o vide only weak relationships between the FDO, allocation method, target type, target R
F, size, method of engagement, and initial ammunition load. Thus, the question remains, R
"Is this a result of variables measured in the experiment or a consequence that these
> procedures could only be focused on limited subsets of the data collected?™ Subse- A
K quently, a search for a different means of analyzing this data has been undertaken. |n::
D\ ot
|.‘
;: 1. Classification Tree Methodology :ﬁ
7 a. Background "‘z;
& -
" Trees, whether known as decision trees, binary trees, or by some other name, have 4
been previously used by data analysts as an informative nonparametric tool for investi- )
gating various types of data sets. Tree classification methods use the data to form pred- L
‘ jction rules for a response variable based on the values of independent variables. x
4 Specifically, measurements are made on some object, and a prediction rule is then used :}:ﬁ
I' ‘.‘
i L
: 3

17

O ‘-V.~v 1Y) \D,\.‘!Aq.!,‘\‘g)“. et
Y LN .
‘|" |"

AN AN ’ \ AR A . O
AN l“l.‘.b“t JASATAL LTI dad TR ; y :\ Lt v
\l'l“'\"'l’ A0 \) g v’ I ety
oNattitat ittty ) .

¥
\ ROADAIAE OO R

\)
:-iivl: m-‘-‘!- aﬁ‘n'l‘-‘.‘! b,




to decide to what class the object belongs. This methodology is so simple that it is
often passed over in favor of other methods which are thought to be more accurate,
such as discriminant analysis.

Reeent developments in the arca of structured classification trees, which have heen
published by Breiman et al,, are aimed at strengthening and extending the original tree
methodology. Their advancomonts have becn incorporated into a statistical software
package known as CART™ (Classification and Regression Trees). Given complex data
sets with many independent variables, the developers of CART feel that the structured
trees produced by CART can have crror rates that may be significantly lower than those
produced by the usual parametric techniques. These procedures are robust, e.g., they
minimize the effects that data outliers might produce.

We feel that the advancements made in the area of structured tree methodology
are significant enough to warrant investigation and application to the problems of allo-
cating and distributing 155mm howitzer fire.

b. Overview of the CART Methodology
1. Definitions

Many of the statistical techniques presently available are designed for small data
sets having a standard data structure. By a standard data structure we mean that there
are no missing values among the measurements made on an object, or so few they may
be estimated prior to analyzing the data. In addition, the variables all have to be of the
same type, i.e, all numerical or all categorical. The underlying assumption of the data
is that the driving phenomenon is homogeneous, i.e., the same relationship holds over
the entire set of measurements made on the object in question.

The data which is available to study the problem of allocating and distributing
friendly fire on enemy targets does not meet the above criteria. In both data sets, values
for several of the measurements used to describe an enemy target may be missing or
must be assumed not available for any number of reasons. The variable list comprising
the make-up of a target's description (to include such items as its location, activity,
description, etc.) is a mixture of both numerical and categorical variable types. Finally,
we cannol reulistically expect the same relationships to hold amongst the wide range of
measurements made on a target.

8. Constructing a Classification Tree

To initially construct a structured tree, four elements are needed: 1) a set of binary
questions of the form: Is x € A?, A C X, where x is the measurement vector defining
the measurements (z;, 2, ...) made on a case, and X is defined as the measurement
space containing all possible measurements, 2) a goodness of split criterion that can
numerically evaluate any split of any node of the tree, 3) a rule which dictates when to
continue splitting the node or to declare it a terminal node, and 4) a rule for assigning
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every terminal node to a class. The sct of binary questions generates a set of splits of
every node. Those cases answering "yes” go to a left descendant node, while those
answering "no” go to a right descendant node.

3. Features and Advantages

Breiman et al.'s methodology for classification trees appears to be a powerful and
flexible analytical tool. Some of its major features and advantages over other methods
will be very briefly outlined.

One of the more important aspects of the CART methodology is its ability to
automatically handle missing values while minimizing the loss of information. This is
achieved via the concept of surrogate splitting.

To understand surrogate splitting, two splits are said to be associated at a node if
either of two conditions exists. If most of the cases are sent to the left or to the right by
one split, and the other split also sends most of the cases in the same direction, the two
splits are said to be strongly associated. On the contrary, the splits are also associated
when one split sends most of the cases to the left (right) while the other split sends most
of the cases to the right (left). The missing value algorithm then proceeds as follows.
The CART methodology is designed to initially search through all possible splits on a
given node and select the best split. For example, suppose the best initial split is: Is z(5)
> 34.11. All other variables except 2(5) will then be searched until the split on each
variable which is most closely associated with the split on #(5) is found. This series of
splits might result in a list such as the following

2(2) > 26.2 is the most closely associated with z(5) > 34.1
2(11) > 50.8 is the second most closely associated with #{5) > 34.1

and so forth. These splits are the surrogate splits for ‘he initial split: Is 2{5) > 34.1%.

If a case has a missing value of 2(5) so that the bhest split is not defined for that
case, CART then looks at all nonmissing variables in that case and finds the one having
the highest measure of predictive association with the best split. In this example, CART
would first look at the most closely associated surrogate split. For example, if the value
of #(2) is not missing, then the casc would go left if 2{2) > 26.2 and right otherwise.

This procedure is analogous to the one used to estimate the missing values in a
linear model (viz., regression on the nonmissing value most highly correlated with the
missing value). However, the CART missing value algorithm is more robust. The cascs
with missing values in the selected splitting variable do not determine which direction
the other cases will take. Since further splitting continues, there is always the possibility
that cases which may have been sent in the wrong direction due to the missing value
algorithm will still be classified correctly.
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Since variables do not act alone when predicting a classification, it is natural to
question which variables played the role of predictors. In the construction of a tree there
may be instances in which some of the variables are never used to split any node; how-
ever, this does not nccessarily mean these variables lack any predictive information.
Therefore, each variable is assighed a measure of importance which may be helpful to
the analyst in uncovering variables otherwise glossed over when looking at only the
splits from the final selected tree. One note should be made. Like many variable ranking

procedures, this one is a bit subjective and the exact numerical values should not he
interpreted precisely.

Other features which do not require such an in-depth discussion are the following:
1) ability to handle both numecrical and categorical variables in a natural and simple
fashion, 2) application to any type of data structure through the formulation of an
appropriate set of binary questions, 3) a variable selection process closely resembling a
stepwise procedure since a search is made at cach intermediate node for the most
significant split, and 4) in the overall measurement space X, the trees exhibit a robust-
ness property similar to medians, while within the learning set the method is not appre-
ciably affected by several misclassified points.

¢. Digit Recognition Example Using the CART Methodology

The following digit recognition example was constructed by the authors oi CART
and illustrates the various parts of the classification portion of the methodology.#*

Most of us are familiar with electronic calculators which ordinarily represent the
digits 1, ..., 9, and 0 using seven horizontal and vertival lights in specific on-off combina-
tions. If the lights are numbered as shown in Figure 3, then f denotes the ith digit, { =
1,2, ..,9 and 9, and the measurement vector (z;, ..., 2y) is a seven-dimensional vector
of zeros and ones. Let z;,=1 if the light in the mth position is "on" for the ith digit,
otherwise z,,=0. Table 1 presents the possible values of z,. Set the number of

classes C'= {1, ..., 10} and let the measurcment space X contain all possible 7-tuples of
zcros and oncs,

Suppose the data for this problem are generated from a faulty calculator for which
it is hknown that each of the seven lighte has the probability of 0.1 of not functioring
properly. The data consist of cutcomes from the random vector (X;, ..., X3, Y) where
Y is the class label and assumes the values 1, ..., 10 with equal probability and, as noted
previously, the X,, ..., X; are zero-one varinbles. Given Y, the X, ..., X; are indepen-

dently cqual to the value corresponding to Y in Table 1 with probability of 0.9 and are
in error with a probability of 0.1.

%% ¢ akould be pointed out bere that while this is the same exarnple as outlined by the author ia their textbook, the output they
produced for Lhe purpose of illustration was not geaersted by the learning sample data presented in the texi Padraie Neville, wbo
has been ansisting the autbors with the software mabagemnent, bar stated that the origizal data used to run this example was

accidentally lost, bowever, the data in the text nearly depicis the original dats Therclore, the final struciured tree prerented iu this
paper will differ from that presented in the text.
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Figure 2. Horizontal and Vertleal Lights.

Table 1. Possible Values of z,,.

Digit x; X3 X3 X4 X3 Xg Xe | ¥
1 o o ! o0 O 1 O 1
2 1 0 1 1 1 0 1 2
3 i1 o ' 1 0 1 1 3
4 Q 1 1 1 0 1 O 4
5 1 1 o0 1 o0 1 1 b
6 1 1 o0 1 1 1 1 6
7 1 0 1 o0 o0 1 O 7
8 1 1 1 1 1 1 1 8
9 1 1 1 o0 1 1 0
0 1 1 1 o0 1 1 1110

The learning sample, L, is comprised of two hundred samples which are gencrated
using the above distribution. Recall that each sample in L is of the general form
(2, ..., 73, J) where j € C is the class label and the measurement vector z, ..., # con-
sists of zeros and ones,

As previously mentioned in Section IIl.b.2., to apply the CART structured
classification construction on L, four things must be specified: 1) the set of questions, 2)
a rule for selecting the best split, 3) a criterion for choosing the right-sized tree, 4) a
rule for assigning every terminal node to a class. Here the question set consisted of the
seven questions: Is z, == 0! where m = 1, ..., 7. The Gini index of diversity rule was
used to select the best split. The concept of this splitting criterion depends on a node
impurity measure. Given 8 node n with estimated class probabilities p(5 | n), j =1, ...,
J, and the probability that given a randomly selected case of unknown class falls into
node n that it is classified as class i, define a measure {n) of the impurity of the given
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node n as a nonnegative function ¢ of the p(1 | n), ..., p{J | n). Subsequently, the Gini
index of diversity takes the form: dfn)= Y p{j | n) p{s | n). This node impurity is

]

largest when all classes are equally mixed iogether in the node and smallest when the
node contains only one class. A search is marle for the split that most reduces the node,
and consequently tree, impurity. The V-fold cross-validation method was used to
»prune” to the right-sized tree. Here the original learning sample L was divided by ran-
dom selection into V subsets L, v == 1, ..., V, of nearly equal size. The wth learning
sample is: L) == L~ L,, v =1, ..., V, where L!" contains the fraction {V-1)/ V of the
total data cases (the cases in L but not in L,). For example, if V is taken as 10, each
learning sample L") contains 9/10 of the cases. Assume that a classifier can be con-
structed using any learning sample. Then, for every v, apply the classification procedure
and let & (x) be the resulting classifier. Since none of the cases in L, was used to con-
struet o®) (the classifier), a sample estimate of the overall tree misclassification rate may
be calculated, and a classifier is now constructed using the entire original learning sam-
ple L. The assignment rule proposed was to classify a terminal node n as that class for
which Njn) is largest, where N{n) is the number of class j observations in n.

The resulting classification tree is shown in Figure 8.! The question leading to a
split is indicated directly underneath each intermediate node. If the question is answered
affirmatively, the split is to the left; if it is answered negatively, the split is to the right.
Note that there are 11 terminal nodes, each corresponding to at least onec class with
class 3 having a second terminal node. Generally speaking, such a one-to-one correspon-
dence occurs by accident since any number of terminal uodes may correspond to a par-
ticular class, or some classes may have no corresponding terminal nodes.

The overall probability of misclassifying a new sample given the constructed
classifier (and the above fixed learning sample), R#(]), was estimated as 0.31. Two other
estimates of R+#(]) were also computed: 1) the cross-validation estimate, and 2) the
resubstitution estimate. Since the learning sample, L, must be used in actual problems
to construct both the classifier and to estimate R#(/), these estimates are referred to as
internal estimates. The cross-validation estimate was estimated as 0.32 - satisfactorily
close to R#(l). The resubstitution estimate was also calculated to be 0.32. This particu-
lar estimate identifies the proportion of cases from the learning sample, L, which is
misclassified once the set is run through the constructed classifier. Using the V-fold

cross-vnlidation method explained earlier, such estimators come satisfactorily close to
R(l).

t The notation veed bere to describe the clasnfication tree dill+rs from that of the text
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Figure 3. Digit Recognition Clascification Tree, i

IV. Summary ' hices

The classification tree structured methodology developed by Breiman et al frosia
currently seems to be a viable approach to analyzing the available data sets. Although -
the regression tree portion of Breiman et al.'s methodology has not been examined in e
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detail, it also may be another means of analyzing this data. In the case of the data from
the Firepower Control Experiment, it should be intcresting to compare the results of the

multiple regression analysis, Mann-Whitney test, Kruskal-Wallis tests, and cluster
analysis to the CART results,

A critique of this proposed approach and suggestions for alternative approaches are
invited.
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A SIMPLE MATHEMATICAL MODEL FOR THE SIMULATION :!E;i;‘;
OF IR BACKGROUNDS :“,z;::
5
Denis F. Strenzwilk, US Army Ballistic Research Laboratory ;:Qi; ,
Michael P. Meredith, Biometrics Unit, Cornell University :EE:‘
Walter T. Federer, Mathematical Sciences Institute, Cornell University
ABSTRACT i
r"'b '.g
At the US Army Ballistic Research Laboratory (BRL), Aberdeen Provin h{:ﬁ;-_
Ground, Md., weapon system analysts use background models in order to: 1 A
establish ‘clutter” thresholds for firing algorithms: and, 2) to study the el
masking and false alarm effect of background in their effort to evaluate the ha,
Eerformance of various weapon systems, The BRL has received from US Army s
ngineer Waterways Experimental Station (WES) several large data bases W
comprised of blackbody temperatures derived from measurements obtained with O
an IR sensor. The sensor was mounted on a helicopter and scanned in the o~
cross-track direction perpendicular to the direction of flight (in-traek&. The data o
consists of temperatures of scene elements (Pixels) for a plowed fleld, a forested o)
area, and a Emsy fleld. The primary objective of this research is to provide a s
simple mathematical model which provides simulated data that are consistent DOOR
with descriptive statistics from the original spatially correlated data base. Ko
Such statistics include the mean and standard deviation of temperature, and its B
‘energy spectrum'. The Mathematical Sciences Institute (MSI) at Cornell 3
University have suggested time series models and a Spatial Moving Average o
(SMA) model as two approaches to the problem. One long term objective of (ons
this type of investigation is to construct a method for relatmgb parameters in {;‘1;5’;.
the model to physical constants. If successful, the model may then be extended M2
over the diurnal cycle and seasons. o
1. INTRODUCTION b
AN
BRL to date has modeled target signatures in a deterministic manner while .:-::i
background signatures have been treated stochastically, The deterministic model for R
targel signatures is apgropriate because under a particular set of conditions, the '
signature is rather well defined and is amenable to a single characterization. The case

is not the same for backgrounds, which are manr and varied. Thus, the general
approach in modeling backgrounds has been to select a data set of a homogeneous
scene, to extract pertinent statistics, such as, the mean temperature, the standard
deviation, the ‘energy spectrum', the correlation between pixels, etc., and finally,

to develop a model, which can simulate & ‘typical' background segment with
these same statistics.

In most smart weapon simulations, the sensor scaps across many square meters
of background before any target is encountered. During this time, the sensor's signals o
are processed by a target discrimination eircuit that usually includes some sort of e
adaptive threshold logic. Usually for this type of discrimination, the signal's Root- '
Mean-Square (RMS) average is developed as a measure of background ‘clutter’. Target
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.:.;.:,;
detections occur when the instantaneous sensor output exceeds a threshold value that o
is proportional to the average of the output signal. The sensor's output signals Sy
produced by scanning the modeled background are thus used to provide a basis for e
setting the detection threshold; this is perhaps the most important function of the Y
background. The stochastic background modeling approach currently being used at the e
BRLﬁs based on a normal temperature assumption. It is quite well suited to provide a o
reasonable estimate of average clutter in many situations, even though the temperature S,
distribution of the pixels is not normal. However, a background model also ought to s
include some provision for sources of false detection. The simple stochastic i
background model described here is clearly not capable of fulfilling this objective, for @4
there is only a very remote possibility of a [false alarm when the detection xR
threshold is set to some multiple of the RMS signal. What is lacking is a means ot
for incorporating some realistic scene features that would constitute possible sources St
for false alarms. :.;:;f’:j
O]
Given that a target signature model with a reasonable deiree of fidelity is mated (i';,\‘:f
with a valid stochastic background signature model , it is possible to predict when and i
where a target detection is likely to occur. Probabilities of target detection can be il
inferred afmg the sensor/processor may be analyzed in terms of performance given a !
target encounter, This has been the BRL apY(roach for many smart weapon e,
simulations. A different approach must be taken if one wants to make some A
assessment of the smart weapon's capability for rejecting false targets, Ideally, the R
backﬁround infrared signature model used for this type of performance analysis ought to !
include a realistic characterization of individual scene elements that might confuse the s,
target discrimination logic. Might it be possible to develop a background signature 0,
model that is predictive in nature and includes specific features that are potential false D
targets? BRL would like such a model if the development effort does not cost us too T
much, and more lm?ortantly it the proposed model does not require so many computer ot i,
resources as to interfere with those needed for the performance simulation. 'k‘:-;i
X
.‘Q.“:
An alternative to ‘‘modeling® the background signatures either deterministically .‘:g’:g','
or stochastically would be to use actual scene measurements as inputs to the smart
weapon sensor model. This would require that the measured background signatures Syt
be compatible with the sensor model in terms of viewing direction, detector Y
wavelength band, and scene pixel size. Although the existing infrared background .:;::!:
signature data base is rather extensive , very few of these sources have the requisite ol
charactoristics for smart weapons system evaluations that are currently being ity
conducted. One source of data found to be generally compatible with the type of smart ®
weapons that are beinf investigated at the BRL s the set of infrared scanner iy
measurements of a rural area near Hunfeld, Germany made by the US Army Engineer ;:-:'.-?
Waterways Experiment Station (WES). For these measurements WES employed a : .::;3::
helicopter-mounted Daedalus infrared scanner operating in the wavelength band of et
8.6 to 12.6 mictometers. The scanner was flown over the test terrain at altitudes of 200 W
and 600 feet. The sizes of the corresponding ground resolution elements were roughly °
compatible with the 0.1 meter resolution that is optimum for the BRL's smart W
munition evaluation efforts, and the site of the measurements and the scene content is .'.-::'-:
quite aipropriate. The advantage of modeling this data set is that the model can ,.:-;.".‘
be checked against the actusl data in the simulation of a smart weapons concept. .’.::a::
o
: ®
Up to this point the discussion has been confined to simple scenes, e.g., a grassy "
fleld, a plowed field, a forested area, etc. Once a suitable model for a simple scene has .':,\:::
2
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been developed, BRL wants to conmstruct arbitrary scenes from these simple scenes, ,:;:ﬁ::
Thus a forested area of any desired size may be placed next to a plowed field. A road n'-;::::u
may be added to the scene. This compound scene with these three different kinds of ,!!t:?.-f
textures could then be used in comyuter simulations of smart weapon concepts. All N X
kinds of different compound scenes of arbitrary geometr{I and composition could be N0
constructed from the models of the simple scenes. Thus the ability to construct oty
compound scenes from simple scenes is a desideratum of the modeling effort. e,
u”.;:a:;:_a

II. DATA BASE ik

In this paper the time series models were applied to the data of the forested area. ;w;ass

The data of the plowed field and grassy area have a similar format, The data base for AR
the forested area is composed of 250 rows of temperatures, Each row contains 500 ,a‘;.;:isg-’
temperature pixels, Thus, for this data set there are 250 rows times 6500 columns or R
125,000 pixels of temperature. A row of data (500 pixels) represents one ‘cross-track’ RO
scan of the sensor, which was mounted on a helicopter that flew in a direction -
erpendicular to the rows (‘in-track’z . After processing the data with ground truth X
nformation, it was concluded that at the 800 ft altitude the in-track (flight direction) i,
dimension of the pixels was 0.3050m whereas the cross-track dimension was 0.15625m. ::o}:u:‘
The dntn are highly correlated both in-track and cross-track. .:;-;:.:4
!ot:a.l

. TIME SERIES MODEL e

For each row of 500 observations a (pmsl, q==1) autoregressive moving average :?n.i?;?‘f
model, ARMA(1,1) was fitted to the data. If the actual temperature observation was :;;:;u‘;.’,;
used to forecast the next pixel value for a complete row of simulated data, the e
forecasted data had the same spatial pattern and statistical characteristics as the actual W
data. If, however, the forecasted value wns used to forecast the next pixel value in the ;i@
row, the resulting set of forecasted values did not have the same pattern but did have ey
the same characteristics. Thus, to preserve the spatial pattern in the time series RN
approach, the actual data base would have to be used to make the forecasts. It was i
decided that for most applications it would suffice to have a model with the same i,
statistical characteristics. Therefore, the actual observation of the temperature of the Dol
first pixel in each row was used to forecast the 2nd value and thereafter the forecasted P
value was used to forecast the next pixel value in the row. The ARMA used was X
. l.\"

=210 01+ (B4 ), IL1 ""%

(N

where ‘:;.. v
¢  oquals 1,2,3,..,500 e
B

z, temperature of t th pixel in row -:W
Vol

7,  tomperature of t th pixel in row minus the mean, (2-p) e
p  mean temperature of row O'
P,
¢,  autoregressive parameter of order one , é.":‘
§; moving average parameter of order one t
» \J

a, random number for t th pixel from My, 0,2), called residual or ‘shock’ i |_
i, mean temperature of residuals ::'?r )
ﬁ”*i‘ t
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o, standard deviation of residuals

IV. ENERGY SPECTRUM

T "

Let us represent the the two dimensional array of temperatures as a matrix, whose
elements T\/,m) are

. 'ﬂ',m)==‘¢, V.1
; where
4  is the value of z, in the lth row

equalﬂ O’I,Q,Ul,N' - 1

3

- o e

N, is the number of pixels in a row (==500)
, 1 equals 0,1,2,...,N, - 1

) N, is the number of pixels in a column (=250).

' t equals m+1

i The discrete Fourier transform (DFT) for a row of temperatures is

Hkym B T m)ezpl-ian/Nym, Iv.2
; where "

;if k  oquals 0,12,...,N,-1,

\’ and for a column of temperatures is

Z,(K)= S Tl m)eapl-i(2n/N,)IK, V.3
E': where =

;’ k equals 0,1,2,.,,N~1.

j The frequency of a row f, is

;5 =m/NA, V4
) where

¥ A, is.1525m,

.:: and the frequency of a column /, is

4 f=I/N.A, V.5
A where

' A, is .3050m,

g: The cnergy of the kth frequency in the lth row SY(k) is

: P

g ! ‘,
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S(k)y=2\(k)Z' (), Iv.e
and the energy of the kth frequency in the mth row S, is
S(K)=Zn(K)Zp( K), v.7

where the symbol # denotes the complex conjugate. The cross-track energy spectrum
and the in-track energy spectrum are a statistical measure of the correlation of the data,
and result when Flg') or Spn(k) are plotted against frequency, respectively. (Zero
frequency is excluded as the interest is in the the variation from the mean.)

The energy spectrum is symmetrical about the Nyquist frequency, which occurs at
[+=.5/4A,=3.279 cycles per metre and at f,==.5/A,=1.639 cycles per metre. Thus, it is
common practice to multiply the energy of the kth frequency by a factor of two, and to
plot the energy spectrum up to the Nyquist frequency. This convention was used in this

paper,

In order to approximate an ensemble average by a spatial average, it is customary!
to average S{k) over the 260 rows and to average S,(k) over the 500 columns. Thus,
the average energy of the kth frequency of the 250 rows S "(k) is

249
r=(1/250) ¥ SY k), v
l=0
and the average energy of the kth frequency of the 500 columns S,(k) is
408
S,=(1/800) 3 Sp(k). Iv.e

mm=(

V. TWO DIMENSIONAL ARMA MODEL

The criterion for selecting a model was that its mean temperature, its standard
deviation, and its energy spectrum, which measures the correlation in the temperature,
be in good agreement with the data. The mean temperature and the standard deviation
of the datn were evaluated. The energy spectrum of the data was evaluated and plotted
versus the frequency for the cross-track and in-track directions.

The first two dimensional l_}2D) model tried was to simulate the 260 rows of
tempernture by using Equation (II.1) and the appropriate parameter estimates for each
row. The mean temperature and its standard deviation were in good agreement. The
cross-track cnergy spectrum for the rows ST(k) was also in good agreement with the data
since the AR model was fitted to the rows. However, the in-track energy spectrum
for the columns S,(k) was not in agreement with the data. This was expected because
nothing had been done to introduce correlation between adjacent rows. Several
approaches based on using the temperatures in the row above to forecast the next
forecast in the row below were suggested as a way of introducing correlation. None of
these approaches was successful.

After inspection of the spatial temperature variatior of several sets of adjacent
rows, some trends were noticed. The first was that T, m) and T{/+1,m) had similar
values and the second was that if Tl/,m+1) increased or decreased from T{i,m) , then

1 1a Rocca, Anthony J. and Witte, David J.,''Handbook of the Statistics of Various
Terrain and Water (Ice) Backgrounds from Selected U.8. Locations(U),” DTIC Technical
Report Number 139900-1-x, January 1980, pages 2-11 to 2-12.
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s T(+1,m+1) would show a similar increase or decrease from T{/+1,m). Perhaps, the '

' shock af that produced T(i,m+1) was correlated with the shoc af“ that pro?uced ,:{
"\ l+1,m+l)l. Based on this physical evidence, the assumption was made that a, was N
' related to ai*! through a bivariate normal distribution ¢(a},af*!) given by '

2 n
I+1 I4+1 3

) 1 1 a‘ al‘ o 6 e,
"l g(al,a“"l)_—:[ ]exp = ommm— o— -2p--—+ —— ] V.1 :i:i ®
i S PR e 21-A)| | o] ol ot | o ' '
) where the means of the residuals 4! do not appear since they are approximately equal to ';,r
' zero, and the correlation coefficient p has the range 9;“.
4 ~1<p<+1. V.2 0
X . 1
3 The marginal probability density function (pdf) for a} is e
N i}@'
" a(d)=N (0, (0}, va 4
and the marginal pdf for al*! is .
i alaft)=N(0, (oi")3. V4
% The conditional distribution for ai*! given af is N
oht! 2 o
gl a)y=N|o —|at , (e (1-p?) V.5 e
0 4 :
M v“‘x
4 1
* Now, the following procedure was used to find that value of p which minimized in m
. the least squares sense the difference between the in-track energy spectrum of the data “
%, S,(k) and the in-track energy spectrum of the simulated data S,(k ;p). For a given value W
Py of p the first row of simulated temperatures was generated from the ARMA model give b,
o in %quation (TII1.1) with the appropriate parameter estimates by using the values of g; o
B drawn from the marginal distribution given in Equation (V.3). The second row of "
o simulated temperatures was generated from the ARMA model given in Equation (III.1) .
E with the appropriate parameter estimates by using the values of a} drawn from the o
R conditional distribution given in Equation (V.5). The set of a!'s for the second row were ]
o then used to generate the a?'s for the third row through the conditional distribution §
';'.: iven in Equation (V.5), etc., until 250 rows of simulated temperatures were generated. 1
R hen, the in-track energy spectrum S,(k ;p) was evaluated. The process was repeated for :". .
: several values of p and the sum of squares of differences between the in-track energy ) B
e spectrum for the data and the simulated data was evaluated for each value of p. The ot
) value of p which minimized this sum was chosen as the p to he used in this model. c§‘
'.. . ey
VI. CONCLUSIONS FOR 2D ARMA MODEL ' X
. The value of p which minimized the diﬂe;l_gnce in the actual and simulated energy %
s spectrum was 0.89. The mean temperature T of the data base was 13.1°C and its *3
o standard deviation o was 1.2°C, whereas the simulated data base had a mean o
b temperature of 13.1°C and a standar? 4~ -iation of 1.1°C. The comparison of the cross- )
® track energy spectrum for the data .o. wr the simulated data can be seen in Figure 1. ‘
. Similarly, the comparison of the in-track energy spectrum for the data and for the ‘

simulated data can be seen in Figure 2. The agreement in both cases is good. Thus, this )
- two dimensional ARMA model can simulate the statistical characteristics of the data, w
" but not the spatial variations. Furthermore, to obtain more than 250 rows use Row 249 2
" parameter estimates for Row 2561, Row 248 parameter estimates for Row 252, etc., and i,
Y o
. 3
v 32 1

\J
I WS
RS CEAONERE LU0 (o e AT A R AT SN st e R
R L R A A i \‘; A A T




; iy =)
| -
£ :
=% -
=] g§ i
el L
5 5B
=) 2| = - q.8
S B e = ®
© =N PR Yy
é :cE %3
S - -
N B
i) . B By
= g8
@ -2 s
o - O 8%
2] Nt
2 - & ESE
= & s
= 24&
- s I3
e
g BiE
- RN RS
R EEg
2 - sg3
o i < ca
= -
- 2
; o
L (<9
?O

LI LA R ey LLLRASE LA

i) 07 01 01 07 or
(2mSTIYSIA) TIAVADS SNTATON 140

33

, I AP » P*F'

0 N 0 I
B S a-i&ii.:!ﬁ!:'* AR

.-‘-.‘\‘* .xa.nud.\s o u’l& '3| 1"”""'“‘? , Pl A




: o
< | -
< :
=
=) ~ B
g 2B “
< | B
2 al < -
= g
E S NN L
g = | | 2
Ll 198
e =IR7 = = Tt
T ' of 45
) SE
3 L 2 g8
< COOS T
= g aw
B~ - B2
s L B X
= L 2 §%
- 1- S
88
= - 0 fep
&= | -l
- K
T tv&a
= -2 =3
7 R ]
<2 E n.gg
2 N
= 3 <i2
" =
a &
- R
"
LA 1AL LA UL JLLLAR L i’ a

07 0T 07 07 o1 0T
(2eSTAYHIA) QIIVADS SATAAON LId

34

‘ o
DR R R RARRI R R RN KRR MR R T “{MMMW@



essentially form s rnirror image of the original 2560 rows. To make rows longer, just draw
more than 500 shocks for each row. An alternative to this procedure would be to use the
250 x 500 array of temperatures as the basic unit and extend it in any direction by
mirror reflection.

One untried approach to improve this 2D ARMA model would be to take the
average value of the ARMA parameter estimates for the 250 rows or at least several
consecutive rows to obtain ‘‘representative parameter estimates”, Then, randoml
perturb these representative parameter estimates within their observed bounds for eac
row to be simulated, and proceed as before to determine a suitable value of p for the
simulated temperatures,

Another untried apgroach to improve this 2D ARMA model might be to fit an
ARMA model to every kth row of data. Use the apfropriate parameter estimates for
Rows 1,k+1,2k+1,ete.. For the rows in between 1 and &, use a weighted average for the
Earameter estimates, e.g., Row 2 values are (k—l){k](vaiue of Row 1) 4 (1/k) (value of

ow k), Row 3 values are [(k-2)/k|(value of Row 1) + (2/k)(value of Row k) , etc. (Note
that a small amount of noise could be added to each value.) Proceed as before to
determinc a suitable value of p for the simulated temperatures.

VII. SPATIAL MOVING AVERAGE MODEL

The model described in this section differs from the ARMA models discussed above
in that it is a two-dimensional model from the start whereas the others are one-
dimensional models adjusted to give a two-dimensional array of spatially correlated
observations. It also offers more promise of reproducing the spatial variation of the data,
but at present it has not been applied to our problem. The steps for the SMA model are:
1. Generate an array of 7, which are independent, identically

distributed normal random variables, NIID(0,03).

2. Use Z;; in a spatial moving average (SMA) to construct

the temperature datum T, ,, as

Tn.m=T+ i 25 A"J'Zn+|',m+;' ) VIL.1

fam-p jum-g

where E{T, ,]= T,

sad
Co Tom Turamet)=0, if [al>p, | t|>g; VII.2.a
| CoA Ty Tarme)=02 33 35 AL, it 40, t=m0; VIL2.b
jm-p jom-q
and
CoN Ty Tasamsd=0? 3 33 AyAi, , otheruise, ViL2.c

imephy jum-gdt
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3. A;; are chosen by the experimenter such that

EEAI'J=1 . VIl.3
i

Table 1 illustrates the needed coefficients A,; for p==1,¢==1 that multiply the random
variable Z,, in order to obtain a value for T, ,, in Equation (VIL1).

TABLE 1. Coefficients of the Spatial Moving Average for Constructing
the Datum T, ,, Using thé NIID Random Variables Z;.

-l m__mtl
ol | Ao | Aap | A

n | Agr | Aoo | Aos

: n+l Al.—l Al 0 Al 1

Some A, may be chosen to be zero or some other value.
‘ PROBLEM: Optimal determination of Ay in SMA to match marginal
gpectra from observed process,
: vil. SOME COMMENTS

Our primary objective in this research was to provide a simple mathematical
. model which provides simulated data that are consistent with descriptive statistics from
, the original spatially correlated data base. Our 2D ARMA model met our criterion that
' its mean temperature, its standard deviation, and its energy spectrum, which measures
' the correlation in the temperature, be in good agreement with the data, even though it
did not reproduce the spatial variation in the data. Our assumption that the shocks in
adjacent rows be drawn from a bivariate normal distribution was the ingredient that
introduced the necessary two dimensional spatial correlation in the simulated data.
_ Some additional approaches for simplifying our 2D ARMA model, which were centered
| around reducing the number of ARMA parameter estimates needed for simulation, have
-' been suggested in the text. In addition a spatial moving average model has been

outlined as an alternative method for this problem.

Our 2D ARMA model is an improvement over the normal models that are currently
being used at the BRL, especially since the time series approach naturally forecasts
outlier tempemture;ezlsL talse alarms ) that are found in the data. In time, after more data
are analyzed by MA models, methods for relating the parameter estimates to
physical constants will be found. If successful, the mode! may then be extended over the
diurnal cycle and seasons. Also, for the theorists, an n-dimensional spatially correlatad
model is easily constructed.
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EVALUATION OF CAMOUFLAGE PAINT GLOSS
VERSUS DETECTION RANGE

George Anitole and Ronald L. Johnson
U. 8. Army Belvoir Research, Development
And Engineering Center
Fort Belvolr, Virginia 22060-3606

Christopher J. Neubert
U. 8. Army Materiel Command
Alexandria, Virginia 22333-0001

ABSTRACT

To increase durability, the military has considered using a higher gloss camouflage paint,
The field test and statistical analyses required to determine paint gloss effects upon range of
detection are described. Five, S/4<ton CUCV trucks were painted in the woodland U.S./Ger-
man pattern with 1, 5, 10, 15, and 20 percent paint gloss. At least 30 observers per gloss level
were individually driven towards two sites. The distance of correct detections were recorded.
An analysis of variance with individual comparisons determined that detection range was sig-
nificantly (a < 0.05) greater, when higher gloss levels were compared with the standard one
percent,

1.0 SECTION I - INTRODUCTION

The curreut camouflage paint specifications used by the U.S. Army call for a lusterless
finish. This particular finish was originally selected for camouflage purposes because of its low
visual reflectance characteristic. The lusterless finlsh is the result of a high pigment to binder
ratio, and tends to mark and scuff easier than paint with a lower ratio and higher gloss finish.
In addition, colors in a glossier finish appear more vivid than lusterless finishes which acquire
a washed out appearance much sooner. These phenomena have been the object of concern from
a camouflage standpoint, since the use of glossier paints would result in a longer lasting camoullage
effect.’ However, the problem in using glossier paints is the potential of increased reflectance,
hence detection. It was the purpose of this fleld test to determine statistically the cffect in-
creased paint gloss would have on the range of target detection in a woodland background,

2.0 SECTION II . EXPERIMENTAL DESIGN

2.1 Test Paint

Camouflage paints were purchased in five different degrees of specular gloss (rom the
Enterprise Chemical Coatings Co. Wheeling, Illinois. The paints were produced In colors Green
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383, Brown 383, and Black using paint specification MIL-E-52798A, in 1, 5, 10, 15, and 20%
reflectance measured at 60° (1% is the current gloss of military paint), The gloss percentage
spread was selected to provide a noticeable difference in reflection considering normal manufac-
turing tolerances. The 20% reflectance level was selected as the upper limit, since any greater
refloctance was considered too shiny for military purposes. One gallon of each color, in each
reflectance, was purchased for test and shipped to Ft. Devens, MA where the ficld evaluation
took place.

{ 22 Test Targets

Five, 5/4-ton, commercial utility combat vehicles (CUCVs) on loan from the Massachusetts
National Guard were painted by Belvoir personnel at the Ft. Devens Maintenance Facility in
the standard United States/German three color woodland pattern.

23 Test Sites

The study was conducted at the Turner Drop Zone, Ft. Devens, MA, a large cleared tract
of land surrounded by a mix of coniferous and deciduous forest resembling a central European
| background., Two test vehicle location sites were selected, Site #1 was located on the western
end of the drop zone, so that the morning sun shown directly upon the test vehicle, Site #2
was located on the castern edge of the drop zone, so that the afternoon sun shown directly upon
the test vehicle, An observation path, starting at the opposite end of the drop zons from the
, test vehicle location, was laid out for each site. These layouts followed zig-zag, random length
d directions toward the test sites, and afforded a continuous line-of-sight to their respective test
vehicle locations. The paths were within a 30° to 40° cone from the targets, and were surveyed
and marked at 50 meter intervals using random letter markers. The markers and distances from
the test vehicle location sites are shown in Table 1.
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Table 1

Distances of Markers to Test Vehicles on Sites #1 and #2

ALPHABET
MARKER

LT MraT $s1Z200<CCpPODNITVTXXTOODDI>CO

Site #1

DISTANCE IN
METERS ALONG
PATH FROM
STARTING FOINT
TO TARGEY

1,173.70
1,132.02
1,088.81
1,044.10
1,018.03
989.27
847.17
801.17
854.08
808.71
762,38
723,82
708.95
883.23
653.54
608.16
560.96
536.46
497.44
487.13
418.47
376.60
342,00
298.01
260.15
219.07
172,18
126.89
9.7
27.65

ALPHABET
MARKER

U
H
L
T
J
R
K
|
v
F
Z
E
N
X
D
Y
S
P
M
A
C
o)
@
B
w
Q

Site #2

DISTANCE IN
METERS ALONG
PATH FROM
STARTING POINT
TO TARGET

1,261.50
1,280.74
1,192.40
11K3.88
1,:,6.90
1,076.08
1,033.80
887.16
942.80
902.04
853.67
811.07
770.70
731.23
683.08
648.52
602.61
561.58
817.368
473.04
426.61
382.77
354,02
320.74
297.81
277.02
236.68
202.66
162.82
1258.71
02.18
51.84




2.4 Test Subjectz

A total of 153 enlisted soldiers from Ft. Devens served as ground observers, All person-
nel had at least 20/30 corrected vision and normal color vision, A minimum of 30 observers
were used for each teat vehicle, about evenly split per test site. Each observer was used only
one time,

1.5 Data Generation

The test procedure for determining the detection distances of the five vehicles involved
seurching for the vehicles while traveling along the predetermined measured paths, Each ground
observer started at the beginning of the observation path, i.e,, marker C for site #1 and marker
L for site #2. The observer rode in the back of an open 5/4- ton truck accompanied by a data
collector. The truck traveled down the observation path at a very slow speed, about 3-5 mph,
The observer was instructed to look for military targets in all directions except directly to his
rear. When a possible target was detected, the observer informed the data collector and pointed
to the target. The truck was immediately stopped, and the data collector sighted the pointed
target. If the sighting was correct i.e,, the painted CUCYV, the data collector recorded the al-
phabetical marker nearest the truck, If the detection was not correct, the data collector in-
formed the observer to continue looking, and the truck proceeded down the observation path.
This scarch process was repeated until the correct target was located.

The target CUCVs were rotated between the two test sites on a daily basis, until all vehicles
had been observed by at least 15 observers at each site. Their orientations with respect to the
sun were kept constant at both test sites. The vehicle side windows were left open to eliminate
shine, and a tarpaulin was used to cover the windshield and rear window, The vehicles were
positioned so that the left side was facing the direction of observer approach.

3.0 SECTION HII-RESULTS

Tables 2, 3, and 4 show the detection data for the 5/4-ton CUCVs painted in 1, §, 10, 15,
and 20% yloss. Tabla 2 gives the mean detection range in meters for each gloss level, and its
associated 95% confidence interval, Table 3 shows the analysis of vatiance? performed upon
the data of Table 2 to determine if there were significant differences in the detection ranges
i.e., gloss has an effect upon detection range. Table 4 indicates which gloss levels differed sig-
nificantly from each other. Figure 1 is a graphic display of the detection ranges of Table 2,
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e
]
e
T! 2 e
N e 5
: Mean Gloss Detectlon Ranges (Meters) and 98 Percent Confidence ante
. Intervals, b M
LZ‘%*
' 08 PERCENT CONFIDENCE i
% GLOSS STANDARD INTERVAL :‘;;;'.i,;
LEVEL N MEAN ERROR LOWER LIMIT UPPER LIMIT s
1 3 580.0000 136.3044 520.2433 630.7567 7:33;:;‘
30 7801330 216,308 700.3718 870.8081 o
3N 871.0000 17,7328 £27.0429 1014.0571 L::’:u
30 1078.3333 114,1138 1035.7282 11209418 :;jv\“.‘,n‘
31 1183.0677 83.1087 1119.7878 1186.1480 "
ot
Table 3 ;’.';:;‘—,
an'r'“
Analysis of Variunce for Vehicle Detection Across §ow
Five Levels of Paint Gloss e
Gy b0
l(‘f’la:lv'
DEGREES s
OP ;‘,"4
SOURCE PFREEDOM SUMOF SQUARES  MEAN SQUARE F-TEST  8IQG LEVEL LR
e
et
aLoss 4 6,611,277.3880 1652819.3415 81,7897  0.00000* M
ERROR 148 2,071,601.1011 20215.5887 ‘.0::;0:
TOYAL 182 9,562,068.4671 et
Vv
& IE::::J
LA
BARTLETT'S TEST FOR HOMOGENEOUS VARIANCES ::1;::
L)
’l""l:
NUMBER DEGREES OF FREEDOM = 4, o
F = 6,40661911766 SIGNIFICANCE LEVEL & = 0,0003 N
*Significant at less than 0,001 level. e
l\- 'I=|
(3% ) )
]
Table 3 indicates that there are significant differences in the ability of the ground observers ':::
to detect 5/4-ton CUCVs of different degrees of paint gloss. The Bartlett’s Test indicates that :
the varlances for cach level of paint gloss are not homogeneous, i.c,, significantly different, so 'G::':','
they are not necessarily from the same population. ::
A
QO::
! ‘
L
s
'l‘:‘l';
'n..:t:.
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Table 4

Individual Comparisons Identifying Which Levels
of Paint Gloss Differed Significantly from Each Other

1% QGloss and 8% Gloss

COMPARISON = -210.13333 SUM OF SQUARES = 873198.30383
Fw 33.301 SIGNIFICANCE LEVEL =  0.00000 ***

1% Gloss and 10% Gloss

COMPARISON = -391,00000 SUM OF SQUARES = 2330808.68852
F= 115208 SIGNIFICANCE LEVEL =  0.00000 ***

1% Gloss and 18% Gloss

COMPARISON = -498.33333 SUM OF SQUARES = 3786107.92380
Fw 187.287 SIGNIFICANCE LEVEL =  0.00000 *“**

1% Gloss and 20% Gloss

COMPARISON = -873.068774 SUM OF SQUARES = 8108304.01813
Fw 282802 SIGNIFICANCE LEVEL =  0,00000 ***

6% Gloss and 10% Gloss

COMPARISON = -180.88887 SUM OF SQUARES = 490601.20867
Fw 24,273 SIGNIFICANCE LEVEL =  0.00000 ***

8% Gloss and 18% Gloss

COMPARISON = -288,20000 8UM OF SQUARES = 12485888.80000
F- 61.830 SIGNIFICANCE LEVEL =  0,00000 ***

8% Gloss and 20% Gloss

COMPARISON = «363.83441 SUM OF SQUARES = 2018183.50002
Ew 00.833 SIGNIFICANCE LEVEL = 0.00000 ***

10% Gloss and 15% Gloss

COMPARISON = «107.33333 SUM OF SQUARES = 172808.86667
Fa 8.848 SIGNIFICANCE LEVEL =  0.00348 **

10% Gloss and 20% Gloss

COMPARISON = «182.068774 SUM OF SQUARES = 510360.01586
Fw 25.247 SIGNIFICANCE LEVEL =  0.00000 ***

18% Qloss and 20% QGloas

COMPARISON = -75.63441 8UM OF SQUARES = 87218.15248
Fo 4,314 SIGNIFICANCE LEVEL =  0.037790 *

The following levels of paint gloss differed significantly from each other: 1% vs. 5%, 1%
ve. 10%, 19 vs. 15%, 1% vs. 20%, 5% vs. 10%, 5% wa. 15%, 5% vs. 20%, 10% vs. 15%, 10%
vs, 20% and 15% vs. 20%.

* Significant at a less than 0.05 lovel
*¢ Significant at & less than 0.01 lovel
*¢» Significant at ¢ less than 0.001 level
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- 1200

- 1100 I
- 1000 i

DETECTION - 600

RANGE IN -~ 800 }
METERS - 700
- 600 E
- 800 [ 1 [l | |
1% 5% 10% 18% 20%

GLOSS LEVEL
Figure 1, Detection Range In Meters for CUCVs Painted in Five Levels of Gloss

The Bartlett's Test for homogeneity of variance was significant at less than o« = 0,001,
Thus, it can not be assumed that all the sample variances are from the same population, This
ansumption is required to perform the parametric test of anaiysis of variance and associated In-
dividual comparisons. When the Bartlstt's Test is significant, non-parametric tests should be
used to determine the relative positioning of the sample statistics, Two such non-parametric
tests were porformed, the Krushkal-Wallia One-Way Analysis of Variance and the Mann-Whit-
ney U Test" The Krushkal-Wallls Test determined that there were significunt differences be-
tween the levels of paint gloas, The Mann-Whitney U Test, based upon the Chi-Square
distribution, determined the probability of individual gloss percentages differing from cach other.
These teats, while not as powerful as the parametric test, ylelded the same general results, and
are available upon request from the U.S. Army Belvoir Rescarch, Development and Enginser-
ing Center, ATTN: STRBE-JDS, Fort Belvoir, VA 22060. It is not unexpected that the varian-
ces for each gloas level were not homogeneous. Each level of gloas was different from the
preceding by 5%. These equal differences in shine are not perceived as such by the human
eye. The 195 gloss was seen as dull, however the § through 20% paint gloss was percelved as
being reflective. This in verified by viewing the differences in mean detection for the gloss per-
centages of 1 v&, 5, 5 va, 10, 10 vs, 15, and 15 vs. 20 (see Table 5). If the varlances were nor-
mally distributed, the mean differences between percentages of gloss would be about the same.
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Table § R
‘d
o
Mean Differences In Detection Range (Meters) Between Gloss Levels ~“‘.*A
(NAO
% GLOSS MEAN DETECTION RANGE DIFFERENCE o
‘A':’j'
1ve, 8 580 790 210 B
5va. 10 7% o7 181 Pt
10 vs. 18 o7 1078 107 e
18 va, 20 1078 1183 75 g:g:;::
e
4.0 SECTION IV - DISCUSSION N
s
Figure 1 and Tables 2 through 4 cloarly show that the higher the percentages of paint gloss, AR
the longer the mean range of target detection. The differences between the 1% gloss detection ;:}:;;;.
range, and the $, 10, 15, and 20% gloss detection ranges are significant well beyond the ¢ = 0.05 {*_ﬁ;:"i-
level. This a value Is the probability that one will make a decision that the levels of paiat gloss \f-{::
are significantly different in the resulting detection ranges when they are not. For this study, ERKS
the declsion is that the higher gloss paint levels of §, 10, 15, and 20% will have a longsr range ",J;:z:j-
of target detection than the 1% paint gloss level. In the world of statistics, if a declsion has a s
probability of being wrong § or lesa times out of 100 (@ = 0.05) then this is an acceptable ot
risk, 1f this probability of being wrong is greater than 5 times out of 100, the risk is not accept- : =
able, and the decislon is rejected. In the preseat study, these levels of differences in mean o
detection ranges tend to get smaller as the percentage of paint gloss increases (Figure 1 and .:a:::
Tables 2 and 4), but they never exceed the ¢ = 0.05 level. With the exception of the paint gloss ',::::u;‘
comparisons 10 va, 15% and 15 vs, 20%, which are significant at « = 0,003 and 0.03" respec- ::::‘
tively, the other comparisons are significant at an « level loss than 0,001, The differences be- “’“
tween the detection means usymptotes as the percentage of the gloss gets higher (sec Figure 1). :,::.v‘.'.;-
This is due to the fact that targets with a highor gloss are casier to seo than targets with a lower :i“.;:':‘
gloas. For example, increasing the palnt gloss from 1 to 5% would Incrcase the moan detoction ,::;:::;
range by 210 meters (Table $). et
It was also observed that as the level of paint gloss increased, the visunl perception of a e
pattern decreased. The camouflage pattern was difficult to discern at paint gloss levels of 10% a.:::::;
and above. ) ..u',v
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5.0 SECTION V- SUMMARY AND CONCLUSIONS

Five S/4-ton CUCVs were painted in the standard woodland United States/German three
color pattern with the following paint glosses:

1% (standard)
5%

10%

15%

20%

A minimum of 30 ground observers per paint gloss level were driven toward each of two sites
on marked observation trails in the back of an open 5/4-ton truck. The subjects were looking
for military targets, and they informed the data collector when they thought they saw one. If
the detection was correct, the closest alphabetic ground marker to the truck was recorded. From
this letter, the exact distance to the target from the truck was determined. If the detection was
not correct, the search continued with the truck traveling down the observation path until the
tost target was scen. An analysis of the resulting data provided the following conclusions:

A. The targets with the higher paint gloss of 5, 10, 15, and 20% were significantly easier
to detect than the target with the 1% paint gloss.”

B. The higher gloss paint levels of 5, 10, 15, and 20% will have a significantly longer range
of target detection than will the 1% paint gloss level, which will increase their vulnerability to
eaemy fire.

C. In that the 5% paint gloss vehicle was detected, on the average, 210 meters farther
away than the 1% paint gloss vehicle, one can not recommend any increase in the paint gloss
over the 1% currently being employed by the U.S. military.

* Low visual reflectance is particularly important in woodland backgrounds where reflection and
brightness are relatively low. Its effect in bright backgrounds such as desert or arctic environments,
where reflections from glossier paints may be lost in the noise, remains to be evaluated.
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SENSITIVITY ANALYSIS
OF A NONSTOCHASTIC MODEL

A.A. Khan
US Army Concepts Analysis Agency
Bethesda, MD 20814-2797

ABSTRACT. Simulation models are now widely used as analytical tools. New
models are usually subjected to quality assurance criteria before they can be
employed in studies. This practice is prudent as well as useful in learning the
characteristics of a newly developed simulation model. Also, itis necessary to find
those parameters which have a significant impact on the response variable [1].

Mobilization Based Requirements Model (MOBREM), the model examined in
this article will be used for policy studies and budget planning. Before it can be so
employed , we subjected it to sensitivity analysis. Since the model is deterministic,
there are norandom errors in the response variable; therefore, the usual statistical
methods are not applicable. In their place, the 'summary statistics' R2 has been used
judgmentally.
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1-0  INTRODUCTION. The results in this report deal with the sensitivity analysis of
the simulation model, Mobilization Based Requirements Model (MOBREM). This
model has been designed to provide the U.S. Army with 'a responsive, consistent,
and auditable system for determining the Continental United States (CONUS)
resources required to support mobilization’ [2). This model was developed over a
five year, five-phased period, from 1979 to 1984. it was delivered to Concepts
Analysis Agency (CAA) in August 1984, Since then, the model has been used for the
training of operators and for performing policy studies in connection with
mobilization.
1-1  Sensitivity Analysis. A new model, before it can be used for any study, must
be tested for its sensitivity to input parameters. in this report, we address the
: following issues:
! a. From aselected list of input parameters (or factors), find those
! parameters which have a significant impact on the response variable.

b. Rank order the significant input parameters.
X The response variable in this study is the manpower requirements by the major
Army Commands (MACOMS) Installations, by Army Functional Dictionary (AFD)
code, and by time periods from Mobilization day (M-day) to day of hostilities (D-
day).
1-2  Background. MOBREM is a very large and complex simulation model. For
our purpose it is essential to keep in mind that it is a deterministic model. There are
no random number generators in the subroutines or modules. Repeated
observations do not provide estimate of 'variance’. |f we repeat an experiment with
fixed input values, we do not get anew value for aresponse variable. For this
reason the classical statistical procedures have to be modified to meet the specific
| situation of MOBREM. In particular, F-test and t-test are not valid. We use R2, the
coefficient of determination, as the index of goodness of procedures used in our
analysis..
2-0 OVERVIEW OF MOBREM. It will help in understanding the objectives of this
study to have some perspective in mobilizing large numbers of people. To provide
the reader with the magnitude of the numbers involved, we present in Table 1 the
initial and final stages of mobiiization in MOBREM. We will skip the details of
organizational complexities and the organizations which are required to manage
| this operation.
2-1  CONUS Base. The major functions of CONUS Base organizations are to
provide the support that enable units to be deployed, trainees to be be trained, and
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equipment and supplies to be shipped to the theater or within CONUS. They also
provide medical support for theater medical evacuees as well as those patient loads

generated in CONUS installations [2].

2-2 Projections. A profile of organizationsin CONUS in peace and war is given
below. Itillustrates the staggering magnitude of manpower involved from the
initial to the final phase of mobilization. The organizational complexities to
synchronize various phases of this process quantitatively is the most important
function of MOBREM, but will not be discussed here.

Table 1
CONUS Base Organizations
Units PeaceterO% (S);rengths ;’m‘:ié?ﬁs
{000)
TDA
OSA and OCSA 37 6.8
Joint and DEF ACTV 6.7 7.1
OSA and ARSTAF FOA 46.7 46.0
Commands in CONUS 347.6 658.7
Army Reserves 258 0
National Guard 204 0
TOE
| Training division 32.0 52.9
| Training spt units 4.1 4.5
GSF units 29.8 371
Sep inf bde 19.0 20.1
Other 39 4.1
Totals 539.7 837.3
4
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Table(s) of allowances (TDA) is the number of slots allocated to different
organizations, it includes both civilian and military, and table(s) of organization and
equipment (TOE), i.e., the number of personnel authorized to keep a unit of army
functional.

3-0 DESIGN OF EXPERIMENT. The initial list of 30 parameters was pared down to
9 for this study to economize on computer time; since each run of MOBREM takes
about 12 hours to complete. The selection of the final list of input parameters and
their levels was carried out with the help of both civilian and military analysts.

3-1.  Choice of Design: A two-leve! fractional factorial design was planned for
sensitivity analysis. The full design was completed in two stages. In the first stage,
the 9 factors included both scalar and matrix inputs. The non-scalarinputs were
treated as scalars by the following ccnvention:

High value +CV
Low value -C.V

where C is a constant, V is a non-scalar. In this way the design is the usual fractional
factorial design. Attheinitial stage of the study, we are interested only in
‘sensitive’ parameters, their interactions are of less importance. By 'sensitive,’ we
mean those inputs which produce a large impact on the response variable. A
Plackett-Burman (P-B) design was deemed most suitable in this phase [4]. The 9
parameters are listed below:

)
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FACTOR DESCRIPTION

M-Day to D-Day

Work week

Training load

Show rates

Hospital rates

Deploying MTOE |evels
Non-deploying MTOE levels
TDA levels

Other levels

>

—_ T & m m O N @

Only Factors A and D are scalars

The smallest P-B design to accommodate 9 parameters is a 12 run design given
below . A P-B design allows us to assess the impact of the main effects, which in this
layout are not confounded with higher order interactions [5].




i Table 2

% PLACKETT-BURMAN DESIGN
- | STAGE
| PACKAGES
RUN|IA B € D E F G H |
1 L T T S
i 2 + o+ ok e e e 44
3 -+ + -+ - - - %
4 + - + + = 4 - - =
5 |+ + - + + - + -
6 [+ + + - + + - ¢ -
B 7 |- + & + < o+ 4+ - %
3 8 S T T
9 |- - = + + + - + ¢
5 10 [+ - - =~ + + + - +
M- + - =« - + + + -
2. - . o . . . ..
o + HIGH LEVEL
X - LOW LEVEL
‘PACKAGE' stands for a policy, i.e., a particular combination of input values.
4
‘e 3-2. Second Stage Design. At the firststage, results showed that only 5 factors
‘fl‘ were important enough for further investigation. These are:
I Table3
I\
- FACTOR DESCRIPTION
Y A D-Day to D-Day
if. o Training load
fé C2 Training equipment
\ H1 TDA fill
H2 TDA equipment
52
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H2 is the corresponding level of equipment allowed to the unit. In this scheme, all
parameters are scalars and the second stage P-B design is shown in Table 4.

Table 4
P-B DESIGN
I STAGE

Run | A C1 €2 H1 H2
13 S
14 + o+ + -
15 + o+ -+
16 + o+ -+ 4+
17 + -+ o+ o+
18 -+ o+ o+ &
19 + o+ - - .
20 + -+ - -
21 I
22 + 0« -+ -
23 -+ + - -
24 .
25 -+ - -+
26 - -+ o+ -
27 S
28 S L .

+ HIGH LEVEL

- LOW LEVEL
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4-0 LINEAR MODEL. The collection and analysis of data depends on the i
mathematical model which we postulate to explain the relationship between the ]
response and the input factors. The selection of a fractional factorial design at two 1’
levels, a resolution Ill design (P-B Design), was made with the object of estimating
the main effects; higher order interactions can be sacrificed at this stage. The X
reasons can be summarized as follows (6):

® Not much is known about the model on how different inputs impact on ‘»f
the output. 0
® In this situation it is best to assume a linear model. ;:!
® All experiments under uncertain conditions are conducted with some risk. :'.
If later, itis found that interactions are more important, one can re-run B

the simulation model to obtain additional observations. Simulation
models can be run anytime one chooses to do so, provided time and ;
resources are not prohibitive.

® Simpler mathematical models help in clearer exposition of the conclusions. *‘
4-1  Apalysis. Atthisstage the assumptions of linearity and additivity are |:“
convenient to model our results. !f the experimental region is not large, higher N
order interactions need not be included in the expression connecting the response @
to the input [7]. We approximate the functional relationship between the response o
y and the input factors x1, x2, ..., X9 by Taylor's expansion. S‘;‘
%
ymAg+Ayx;+A2x2+.. +Agxg+R (1) ,,
o
where Aj(i=0,1,2,..,9) are unknown constants and R is the remainder term in the , 'E'.!
Taylor's series expansion.. Observe that this model does not have stochastic Eﬁ;‘
components and therefore statistical techniques cannot be applied. We use the )
least square (I.s.) methods in the estimation of Aj and use R2 to measure the 3
adequacy of the model (1). For a clear discussion of two-level fractional design and }
the techniques of estimation of main effects, we refer to (8. The |least square ”i'
technique is used in (1) to evaluate and partition the total sum of squares into the i' :
:'; component sum of squares. Each component is attributable to a specific factor, plus :;:‘
R the sum of square due to the remainder term. This analysis is carried out for the '5'.:
; data in the first stage. A typical run with the response variable at each time period .:
is shown in Table 5. )
~ ]
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Table 5 R

Total | _'
Manpower
Requirements

Time from
M-Day

M+10 318671
M+ 20 314747
M + 30 354932 |
M + 40 367936 e
M +50 403887 e
M + 60 442291 Lo
M +90 479470 it
M+ 120 498009 e
M + 150 504354 i
M + 180 501839 | it
M +210 497962 RN
M + 240 497845 R
M +270 497494 iy
MOB-AV 532915 R

Since there is an ANOVA at each time period and for each run, there are
13x 12= 156 ANOVAs. These are not listed here, but the result of the analysis is h
shown in Table 6, showing the ranks of the factors in descending order. Y
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Table 6
Ranking of Packages in Descending Order

Factor Package

B Workweek

C Training

H TODA

A M-Day to D-Day

G Non-deploying MTOE levels
F Deploying MTOE levels

D Show rate
E Hospital
I Other Personnel

Visual analysis at this stage is most effective, Figure 1 shows the response variable
against time, when grouped according to the levels of Factor B (workweek). Factor
B is the driver of the manpower requiremants, a result confirmed by the usual
ANOVA techniques. Figure 2 clearly indicates the main effects which have clear
impact on the response variable. Apart from B, A and C produce measurable impact
on manpower requirements up to time M + 100, after that the effects of these
factors is dampened out. Other factors have negligible effects ascan be seen by
inspecting Figure 3. This combination of ANOVA, graphs of main effects and
aggregating results by each level of Factor B is carried out for a selected group of
AFD's. The results confirm the hypothesis that the ranking in Table 6 is valid for the
sampled AFD aggregations. This simple computer intensive graphical technique has
been extensively used In this study.

4-2 |1 Stage Analysis. Since the workweek parameter is so decisive, no further ‘
investigation is required to measure the sensitivity of the response variable to this '
parameter at this stage. In the |l stage of design, a 60-hour workweek was fixed.

The number of input factors was narrowed to 5 factors. Again, a resolution |li

design was used to generate simulation data. The factorsin the |l stage design are

given in Table 7. %
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TIME M4 (DAYS)
Figure 1

TAGE #1 RUN
03

1,000,808 -
988,808 -
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; Table 7

" Packages in the |l Stage Design
g Factors Description
' A M-DaytoD-Day

c1 Training load

y Q2 Training equipment
R H1  TDAfill

‘ H2 TDA equipment

C1and C2 are the elements of the vector input C of the | stage design. Likewise, H1

K and H2 are the components of the vector H of the | stage. At the second stage, all
' paramenters are scalars. The two values of the parameters at thisstage are chosen
i within the range of their values at the first stage.
. The same method of ANOVA is used asin the first stage. A sample ANOVA (for run
13) isshown in Table 8. The response variable is the manpower requirements on

M + 270 day, i.e., 270 days after mobilization day. Sensitivity of a factor is measured
. by its contributions to the total sum of squares. The overall ‘fit' is measured by '‘R2’
: as given below.
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Table 8
ANOVA For Run 13

| 3‘::2';%?:: Sum of squares
A 4.000
H1 495952900.000
H2 0.250
1 6272402402.250
C2 0.250
Explained 6768355306.750
Residual 119041.000
Total 6768474347.750
R2=939%

The explanation of response by the input factors are quite satisfactory with H1 and
C1 being most important factors. The impact of A, H2 and C2 are negligible. Now
we have 13 x 16 = 208 ANOVAS. Figure 4 shows the time seriesdue to each of the 5
factors. Effectdue to C1is dominant, followed by H1. Effectdue to A is significant
up to M + 120 days, after that its impact on the response diminishes. Factors C2 and
H2 are negligible.

4-3 Summary. We have summarized the data from the first stage design using
regression equations. Only halfthe runs (B = +) from Table 2 have been utilized in
deriving these equations in order to compare these results with those of the second
stage design (Table 4). The regression equations and their R2 values are given
below. The dependent variable y is the manpower requirements, the independent
variablesare A, C1 and H1. Only the data for time phases from the mobilization day
(M-Day) to 90 days after it (M +90) are shown.

ForM+10 y=315567-3.4A +52198C1-5756 H1
R2=99%

ForM+20 y=249976+77.1A+66016C1 + 56508 H1
R2=97%
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ForM+30 y=248656.7 +479.1A +8693C1 + 73635 H1
R2=96%

ForM+40 y=255859-216.7A +104387.5C1 + 85470 H1
R2 = 98%

ForM+50 y=265077-644.9A +121675.5C1 + 92054 H1
R2 = 99%

ForM+60 y=261767.3-882.6A + 142257C1 +96510 H1
R2 = 99%

ForM+90 y=278884.7 + 135.6A + 173240.5C1 + 96904 H1
‘ R2=99%

We plan to use these results along with the second stage data to apply response
surface methodology for more refined predictive equations.
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ABSTRACT

The traditional univariate analysis of the repeated measuras design is
cbtained by treating subjects and their associated interactions as random
effects. This analysis requires that certain variances and covariances of the
dependent variable at various combinations of within-subject factors be equal,
Instability of the variance and covariance components may mask significant
effects and compel the researcher to utilize & less powerful multivariate
technique,

This paper illustrates the use of a recently developed class of unbiased
variance component estimators and thel!r associated diagnostics for examining
the data and the model assumptions. A comprehensive example is given for the
case of a three-way design with two factors repeated.

L1.__INTRODUCTION

Repeated measures designs are one of the most frequently utilized classes
of designs in Army Research and Development. These designs offer a reduction
in the error variance due to the removal of an individual's variability, are
efficient, and require fewer subjects to achieve the same power of the F test
as completely random or block designs.

This class of designs, sometimes referred to as within-subject designs,
obtain their name from the fact that one or more factors of the design are
manipulated in such a way that each subject receives all levels of the within
subject factor. The advantage of this approach is that subjects act as their
own control in their responsiveness to the various experimental treatments,
On the other hand, this type of design introduces intercorrelations among the
means on which the test of within subject main affects and interactions are
based,

Due to this intercorrelation, three separate approaches have been
proposed in the literature. The first, ths univariate analysis of the
repeated measures design is obtained by treating subjects as a random effect.
The linear model employed is called a mixed effects model, and the resulting
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analysis is a mixed model analysis of the repeated measures design. The B
standard mixed model asaumes certain variances and covariances of responses
ares invariant acroass the experimsnt, For example, in a thres-factor factorial :
model with Factors 1 and 3 fixed and subjects (or Factor 2) random, a standard o
assumption is that the covariance, 61,5, of responses at the sams lsvel of X
Factor 1 and on the same subject (i.e., level of Factor 2) but at different
levels of Factor 3, is invariant across all subjects, all levels of Factor 1 o

and all combinations of distinct levels of Factor 3, Mors generally, if 6 F
Y the covarliance batween observations at the same levels of Factors indexed t "
j? and at different levels of the other factors, then standard mixed models ")

e assume O, is invariant across all levels of the factors indexed by t and 2
across all combinations of distinct levels of the other factors, This A
assumption is referred to in the literature as compound symmetry. Huynh and .
Feldt (1970) have shown this assumption to be a sufficient condition,

) In the second approach, the multivariats msthod, the responses of a
subject are treated as a k-dimensional response vector. It is worth noting
e that this approach is not as powerful as the univariate approach if the
assumption of compound symmetry is accepted.

Thirdly, a degree of fresdom adjustment initially proposed for use by X
. Gresnhouss and Geisser (1959) is used to adjust the numerator and denominator o
A degrees of freedom of the ratio, Huynh and Feldt (15970) have shown this o
", adjustment to be too conservative. :

Difficulty in interpretation can occur whan several dependent measures i

o are made for each expsrimental treatment and the assumption of compound b
2£ symnatry is rejected. Thias situation can result in a lack of degrees of ﬁ
X freedom and power since the response matrix, which is a multiple of dependent N
o variables and the nuwmber of unique within subject factor treatment o
b combinations, can equal or excesd the total number of subjects. In the o
multivariate context, this can result in the degrees of freedom parameter .

i being very small. s
¢ %
3 s
ﬁﬁ Since it is common and necessary to record, svaluate and analyze numerous ﬁ
o measurements during developmental testing and human factors svaluation of ‘@
vy weapon systems and equipment, alternative approaches to assessing the effect ¢
. of treatment conditions on the rasponse measurements need to be explored. ‘
O v
;ﬁ This paper introduces and demonstrates ths use of unbiased, efficient _?
i’ variance component estimators and their associated diagnostics in analyzing W
o the repeated measures design. s
A L]
3
Wb .
3
‘,:: The problem of estimating variance components in random and mixed models .:f

has been of interest to researchers for years as pointed out by Green and b
4 Hocking (1988). However, over the last few years, new closed form expressions

i for the estimators of variance components have been developed, based on the

" equivalence shown in Green (1985, 1987); Hocking, Bremer and Green (1987); and

S X
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Hocking (1985) of the variance component estimation problem to the problem of
estimating the covariances, 6. between appropriatsly related observations. 1In
addition, these estimators have been shown to provide information which will
be useful in diagnosing problems and suggest simple graphical procedures for
examining the influence of the treatment levels.

To introduce this general methodology, this paper will only consider
three factor repeated measures design with factors one and three repeated as
shown in Table 1, The number of levels of Factor (i) is designated by &y
Subjects are designated factor two. Factors one and three are the within
subject fixed factors. The traditional univariate repeated measures model
with subject and subject interactions considered random is

Y(1ikm) = M + A(L) + S(J) + AS(L) + B(k) + AB(ik) +
SB(Jk) + ABS(ijk) + E(ijkm)

where M is the overall mean, A(l) is the effect of level i of treatment or
factor A, S(j) is the effect of subject j, AS(1j), is the effect of level ij
of treatment combination AS, B(k) is the effect of lavel k of factor B,
AB(ik) is the effect of the AB treatment combination at level ik, SB(jk) ia
the effect of treatment combination SB at level (jk), ABS(ijk) is the effect
of level 1ijk of treatment combination ABS, and E(ijkm) is the random error,
For the traditional univariate approach, it iz assumed that A(i), B(k),
AB(ik), and M are fixed and S(j), AS(ij), SB(jk), ABS(ijk), E(ijkm) ars zero
mean, independent normal random variables with variances ¢2 015: 023, 9123,
and 6 respectively, While the variables are independent, the responses are
correlated with the covariance structurs found in Flgure 1.

This covariance structure in Figure 1 suggestc an alternative approach to
the linear model firat proposed in Hocking (1983) and extended and developed
in Green (1985) to several classes of linear models. This approach relaxes
the requirsmsnt that the variance components be positive. Thus, tha classical
model is replaced by specifying the response vector as normal with covariance
matrix as given in Figure 1 and mean vector determined from the expectation of
Y.

The only restriction on the covariance matrix is that it be positive
definite. This requirement is weaker than the classical requirement that the
be positive. An in-depth development of this alternative model can be

found in Hocking (1983).

The covariance, 6,, is between observations at the same level of factors
indexed by t and different levels of all other factors in the model. This
suggests examining the corresponding sample covariances. These sample
covariances, or averages thereof, yield the estimators of the 6., Sample
covariances ylelding estimators of 6, and 6,, are given in Figure 2,
Similarly, 8,5 is annlogous to the 6, estimator with subscript three
replacing one. For example, from Figure 2 one recognizes the 0, estimator as
the average of a;qr;3 equal expectation sample covariances corresponding to
all combinations of i+1*. ktk*, Here r; is the lavel of Factor { minus one.
Similarly, 8, is the average of a, equal expectation sample covariances
corresponding to all combinations oi ? and kek¥*,
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COVARIANCE STRUCTURE
2 WITHIN SUBJECT FACTORS

cov (Y(ls]sksm)sY(l*s]fsk*sm*) =

@2 = 02 If I=1%]=]"k=k .
012 = 024042 If 1=1*]=) k=zk
023 =

02402 If 121" ] =]"k=k"
0123 = O2#012+023+0423 If I =*l=]"k=k*m*=m

0o + 6123 Ijkm = I**k*m*

Figure 1: Covariance structure of three repeated measures design (Subjects random)

VARIANCE COMPONENT ESTIMATES

B2 = 1 > X(yllk - yL.k.) (yIPJk* - yI*.J*.)
rz @13 rs lkz"k* | |

812 = 1 3 13 (vik - yLk.)(yik*. - ylL.k*)
a1a rn k r2 |j

Figure 2: Variance component estimates for ©2 and ©12
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These covariansces are unbiased and contain the diagnoatic powar. By
plotting these covariances (diagnostics) in table form, one obtains an
indication of the stability of the estimate and of suspect estimates,

In general, one looks for various characteristics and trends, For
example, (1) unusually large or small diagonal entries indicate abnormal
variability in the cell means for this level of the factor under
investigation, (2) special patterns in the off-diagonal slements such as a
particular column or row having the majority of its sntries higher or lower
than assoclative rows or columns, indicate one or more cell meana may contain
extreme outliers, and (3) large fluctuatious in the off-diagonal entries
reflect high variability is the data.

Following the examination of the diagnostics, plots of treatment i vs.
treatment i% cell-means, whers abnormsl diagnostics have bean identified, are
recommended, This will help the researcher identify the treatment cells
responsible for extra lurge or small variance component estimates, Finally,
the diagnostic procedure should conclude with an examination of the data in
the identified cells,

L1l.__REPEATED MEASURE DESIGN

To illustrate these diagnostic procedures, data from a repsated measures
deaign carried out by Malkin and Christ (1987) will be used,

A, Objective

The objective of the experiment was to conduct & laboratory flight
simulation to compare a cockpit keyboard, a thumb-controlled switch, and a
connected-word voice recognizer for data entry of navigation map coordinate
ssts when (1) the entry of Universal Transverse Msrcator (UTM) coordinato sots
is the sole task performed (No Flight) and (2) the entry of UIM couordinate
sets 1is performed concurrently with controlling a helicopter simulator while
flying a computer-generated external scene (Flight)., For this paper, the
difference among the three methods of data entry for responas and input time
will be evaluated for both the Flight and No Flight conditions. The original
paper also investigated error. However, no practical or statistical
difference was found for subject srror in regard to any of the experimental
factors,

B. Methodology
Data were collected using 12 Army aviators zssigned to Aberdeen Proving
Ground, Maryland as the uxperimental units,.

The Aviation and Air Defense Division, Human Engineering Laboratory's
(HEL's) flight simulator was utilized for this study. The Crew Simulator

7C
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OGN
o
b
consists of a cockpit cab with advanced controla and displays and an "out-the- H‘t.
window" scene produced by Computer-Generated Imaging (CGl), Thae CGL, cockpit ol
controls, flight simulation, displays and results were driven or recorded Q:j'
using two Vax computers. Tralning was administered to all subjects in the Ny
operation of the voice recognition system and flight simulator. For am in- Mo
depth accounting of the Apparatus and Training, the reader is referred to A
Malkin and Christ (1987), kiﬂ
% gh
€. Procedure ;ﬁdf
Each subject antered eight UTM coordinate sets for each test condition. Nt
The coordinate sets, which wvere selected from a scenario based on the Fulda N
Gap area of Germany, wers located on a kneeboard attached to the subject's
leg. A standardized, but different set of coordinates was used in each ﬂpf
condition. The subject was tested in both conditions using one data sntry b’
method before proceeding to the next data entry method. The order of the test et
conditions were counterbalanced to control for learning. ;xﬂ*
D, Experimental Deuign @ﬁ’
’ 'G:’;':q
A 2x3x12 factorial design with repsated measures on the twelve subjects : ﬁﬁ;
was implemented. The within subject factors were data entry methods (voice, o
keyboard and thumb-controlled switch) and task conditions (flight, no flight). fat
The dependent variables were input time and = .ponse time, For illustration, e
the 2x3x12 repsated measures design along with input time can be found in 5?@
Table 2. G:f:‘;.
at"“,:?'
E. Results ;ﬂﬁ
AR
Since the response measures were highly correlated, and only 12 subjects :Sﬁ;
were used, a multivariate analysis of variance was performed using the .%ﬁﬂ
univariate repeated measures model with subjects considered a random factor. -bﬁﬁ
The approximate F ratios were then checked againat the Greenhouse Geisser \¥ﬁ~
adjustment and they agreed, -
The cesults are whown in Figure 3. For response time, subjects were able h?%
to respond significantly faster during the no-flight conditfon than during the .Qh
flight condition. There also was a significant interaction between data entry é&ﬁ
method and task conditions. During the no-flight task condition, subjects At
responded significantly faster when the keyboard was used to enter data.
However, during che flight task condition, subjects responded significantly e
faster using either voice or the thumb-controlled switch (see Figure 4), fh&;
X v
There were significant differences among the three mean impact times for " :":
the data entry method. Subjects were also able to input data faster during ) \?
the no-flight task conditions than during the flight conditions. However, .‘
there was no significant interaction between Task and Entry method (see Figure R
5). ﬁ?ﬁ
|';:l'
‘l'l O
N
7 Ak
X]
R e R
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TABLE 2, METHOD BY TASK BY SUBJECT
(INPUT TIME)
Method
Voice Keyboard Thumb
1 2 3
Task Task Task
No No No
Flight Flight Flight TFlight Flight Flight
Subiect 1 2 1 2 1 2
_

1 15,8 17.8 16,9 16,8 28,5 34,3

2 23,9 49,3 9.1 13,2 25,0 35,5

3 33,0 55.9 13,6 31,6 29,7 48,8

4 15,2 27.8 11,3 16,1 24,1 43,1

5 35,9 45,0 11.9 20,7 39,2 65,2

6 49,8 36.4 11,8 23,7 36,3 49,1

7 27.2 3.9 13,9 20.6 31,7 44,7

8 20,6 20;6 10,9 24,1 35.4 37.4

.

9 28,92 38,7 10,5 19,9 34,7 3.6

10 27,7 23,5 10,7 15.9 34,0 43,6
11 17.9 11.7 15,4 24,1 32.6 39.0
12 23,0 16.3 13,5 33,8 38.9 l 70.9
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DATA ENTRY METHOD BY TASK i

| 2
V! 8™ 0.
| . d
- 7 = :’.

g K ;

X T (6.7 ee0) 3
g vt 6 - ':
L,‘: m - T ! l::
t .5 sec o
: ! 8 - (8.8 se0) g
v",':: 3 - :'
s 4= 5
R § J v 7
R ) 3 (3.8 ae0) ’9
y E - (2.3 se0) .r_i
"':" \ v o
i:," E t T ::
o ] ] (2.0 s00) i
(1.2 se0) N

R | N
,3:: | NO FLIGHT FLIGHT :E
o' b
! LEGEND o
|:| .\
Y Vv - voich "
i K - KEYBOARD "
2™ T = THUMB SWITCH N
f
i :
o ]
u Figure 4. Data entry methods by task for response time .
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DATA ENTRY METHOD BY TASK

80 =
T
‘ (48.6 sec)
O 4o
w
e v
w T (38.2 s00)
& 20— (32.8 se0)
- | v—
; (20.6 se0)
& 20- K
! (21.7 se0)
E s
K
E 10 + (12.4 e00)
Y T i
NO FLIGHT FLIGHT
LEQEND
V- VOICE

K - KEYBOARD
T = THUMB SWITCH

Figure 5: Data entry method by task for input time
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L

As a final note, the input time covariances for the within-subject q@
factors deviated extremely from the compound symmetry assumption whoreas the i
compound symmetry assumption for response time was acceptable. Therefors, the Y
variance component diagnostic procedures will be demonstrated for input times "
only. :j
ki

9"._

As previously pointed out, it is natural to estimate the covariances L f&

by corresponding sample covariances. In the balanced cass, and for ths e
Malkin, Christ data, the estimates can be ocbtained from the ANOVA table (see i
Figure 6). a

For this example, a) = 3, a; = 12 and a3 = 2. The estimate of 02 is the i«
average of six distinct sample covariances. They can be displayed in a table ity
such as Table 3-A. The off-diagonal elements ars the sample covariances. To N

avoid confusion, it is worth noting that the diagonal elements are not trus é;
variances since ifi*, An alternative and simpler display of these sample T;
covariances can be found in Table 3-B. Again, the diagonal elements are not oy
true variances since kik¥, i

Under the compound symmetry assumption, all elements of Table 3-A or o

Table 3-B should bs approximatsly equal. Therefore, the diagnostics provide a ’%5
illustrative procedure to check the compound symmetry assumption and identify "y
unique treatments combinations that contribute to this assumption being .&
violated. ﬁg
by,

In examining the 8, off-diagonal diagnostics of Table 3-A, the ::
covariances Keyboard No Flight vs. Voice Flighc (-13.81) and Thumb No Flight N
vs, Voice Flight (-12,47) are small when compared to the other off-diagonal ,#
entries in the Table. In addition, Thumb Flight vs. Voice No Flight (40.78) o
seems large in comparison. This large fluctuation indicates high variability ﬁ}

in the data. b

The diagonal entries of Table 3-A indicates the covariances at the same :

Task level but different Input levels. The large diagonal entry (43.26), .
representing the covariance of Thumb Flight vs, Keyboard Flight, indicates @:
instability and variability in the cell means making up this covariance. ?h
Referring to Table 1, the reader can see that the cell means for Keyboard, 5:
Flight and Thumb Flight are larger and more unstable than the other Method p;
Task treatment conditions, N
This suggests further examination of the specified treatment ﬁ%
combinations. Follow-up plots of subject mean input times by treatment W
combinations reflecting the large or small covariances are shown in Figures 7 ¢
through 9, QQ
Fxaminati{n of these plots revealed that subjects (3, 5, 6 and 12) input 2\
time contributed to the extremely high or low covarlances, .t
]
0
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Subjects are considered random.
T RCE
S

0o+n@123+naz@P12+nazazM1
0o+n@#123+na1@23+naiazT3

8o+n®123+naz2MT13
0o+naiaszb2+naz@i12+nb423

6o+nasz@12+n@q23
Bo+na1923+ndq22
0o+nl123

ANOVA
répeated measures model.

within subject factors.
RELER:

d
2
1
2
11
22
11
22
504
ariance for the three w

Method and task are

METH x TASK

SUB x METHOD

SUB x TASK

SUB x METHOD x TASK
: Analysis of v

URCE
METHOD
SuB

TASK
ERROR
Figure 6
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TABLE Il - A A

DIAGNOSTIC
INPUT TIME | .

02 e

VOICE -

NO FLIGHT FLIGHT b
KEYBOARD NO FLIGHT -5.90 -13.81
FLIGHT 13.68 -5.07 i

VOICE 8
NO FLIGHT  FLIGHT S
THUMB NO FLIGHT 23.15 -12.47

FLIGHT 40.78 10.52 2

KEYBOARKD '.::*f
NO FLIGHT FLIGHT 0

THUMB NO FLIGHT [ 0.19 16.01 )
FLIGHT 1.88 43.26 b
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TABLE lll - B
DIAGNOSTIC

INPUT TIME
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1.88 35.10

40.78
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VOiCE
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The diagnostic plots for 6,5 and 8,4 are shown in Table 4. For 6;,, the

plot consists of covariances based on the same level of Subject and Mathod, ?QE
but different levels of Task. The dilagnostic plot revealed a spurious I
covariance component of 76.2 for Voice No Flight vs, Voice Flight., A follow- i

up plot (Figure 10) indicated that asubjects (3, 5 and 6) input times
contributed to this large covariance.

Similarly, the diagnestic plot for 923. revealed large spurious

covariances at treatment combinations Voice No Flight vs. Thumb No Flight q&ﬁg
(23.1) and Keyboard Flight vs. Thumb Flight (43.2). ﬁ%ﬁo
G
It is worth noting that this diagnostic plot contains covariances based S
on the same subject and Task levels but diffarent Methods, s
Follow-up plots (Figures 11, 12) for both covariances revealed that :ﬂ%ﬁ
subjects (3, 5, 6 and 12) input time were contributing to one or both large was
covariance components. AN
'-';‘i:
Identifying what seemed to be a dichotomous population of subjects, a ;Lﬂ
review of subjsct records wers undertaken to attempt to explain the reason e
subjects 3, 5, 6 and 12 seemed to respond differently from the rest of the i
subjects, A review of the records indicated that, in general, these pilnts i
were older (over 42 as comparsd to under 38), had a higher military rank, and neble!

had spent as much time or more flying fixed wing or rotary wing aircraft, with
recent flying experience concentratsd on fixed wing. Based on subjective

input from expsrienced pilots, differences batween the aircraft In regard to §:?

instrumentation and flying procedures could certainly account for the .ﬁuﬂ
difference in input times batween fixed wing and rotary wing pilots. Tﬁh‘~

Pelprl

A recalculation of the diagnostics with subjects 3, 5, 6 and 12 removed “qﬂﬁ

revealed covariances that were more stable. In addition, in grouping the
subjects into Fixed Wing and Rotary Wing categories and reanalyzing the data, o

the agsumption of compound symmetry was accepted. Mauchly's criteria, which ﬁ%ﬁ&

is used to check this assumption, was found not to be significant at the .01 $ﬁ¢

level. v

R

This information was made available to the Aviation and Air Defense PO

Division of the HEL so ithat this additional source of variability could be ey

controlled for future experiments, ﬂH

o

ey

. CONCLUSIONS e
@

The variance component estimates and associated diagnostic procedures $§§

have bsen shown to be computationally and intuitively aimpla. All ¢¢bq

calculations can be obtained using scandard statistical packages such as 5@ﬂ$

SPSSX, SAS, or BMDP. o
The diagnostic procedures have been demonstrated to be sffective in o

checking underlying assumption (compound symmetry) of the repsated measures W
model, and useful in identifying probable cauaes for the violation of thess
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assumptions. This provides the researcher the option of removing spurious
observations, performing transformations, or controlling additional sources of
variability so that the data can conform to the standard assumptions such as
compound symmetry or to modifying the model. By circumventing the problems
associated with the traditional univariate repsated measures analysis, these
diagnostic procedures provide sasier interpretation of the results and
increased validity of the conclusions derived from the data, The result is a
valuable statistical approach that can bes applied in many areas including
developmental testing and human factors evaluation of weapon systems and
equipment.
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MODEL BASED DIAGNOSTICS FOR VARIANCE COMPONENTS

IN A GENERAL MIXED LINEAR MODEL

J. W. Green R. R. Hocking

Department of Mathematical Sciences Department of Statistics

University of Delaware Texas A&M University

Newark, Delaware 19711 College Station, Texas 777843
ABSTRACT

A new class of unbiased estimators is given for unbalanced mixed
models which have simple, closed-form expressions. These estimators
allow easy computation of variances which, when compared to minimum var-

iance bounds, show the estimators to be highly efficient.

Based on the estimator, a diagnostic methodology is developed for
assessing the effect of the data on the estimates. The source of nega-
tive estimates of variance components is often revealed, as well as

other sorts of instability and problems with the model or data.

An overview of the methodology and its growing literature is given,
illustrated by applications to several industrial problems. The method-
ology applies to all random and mixed models, regardless of the degree
of imbalance or pattern of crossed and nested factors. The diagnostics

flag only those features of the data which affect parameter estimates.

1. INTRODUCTION

The problem of estimating variance components in random and mixed
models has become a classical research area in statistics. Review

papers, such as those by Searle (1971), Harville (1977), Sahai (1979),

9] Preceding Page Blank



Sahai and Khuri (1984) and Khuri and Sahal (1984), attest to the iﬁg
importance of the problem and emphasize the fact that there are many ﬁ%&
aspects of the problem which remain unsolved. ﬁwf
It is well known that in the case of balanced data, The ANOVA %%@
estimators, or, equivalently, the restricted maximum likelihood estima~ ﬁ“i
tors (REML), have certain optimality properties. Graybill and Hultquist :?@
(1961) showed that these estimators are uniformly best quadratic estima- %&E
tors., Under the added assumption of normality, Graybill and Wortham fgng
(1956) showed these estimators are U#VU. A discussion of these results Eﬁi
is given by Hocking (1985). Even in this ideal situation, the esti- Eﬁ%
mates are often unacceptable in the sense of violating the implicit y%ﬁ
assumption of nonnegativity. Several authors have proposed alternatives ?g%
which guarantee nonnegative estimates, including Thompson and Moore ﬁﬁ%
(1963), Hartly and Rao (1967), Rao and Chaubey (1978) and Hartung g@;.
(1981). Searle (197lab) discusses various alternatives in some detail, %g%
Examples show spurious data can lead to negative estimates and Leone, et ﬁﬁ%
al (1968) have shown that negative estimates have non-trivial probabil=- ?2%
ity of occuring. The fact that spurious data can lead to negative ﬂﬁ;
egtimates suggests that even positive estimates should be questioned
and stresses the need for good diagnostic methods.

In the case of unbalanced data, there is a sharp discontinuity in .
theory. Except for special cases, minimal sets of sufficient statistics '.‘
are not known, and, even in those special cases, they are not complete. ;??
Many estimators have been proposed and they fall generally into two 3&{
categories. In one category are estimators based on quadratic forms, ':w
uganally obtained from the mean squares of an AOV table. MINQUE and BE%

hi
b
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telated methods are included.in this category. There is no basis to
support the superiority of any of these approaches. Iterative methods
fall into a seconrd category and include maximum likelihood and REML,
Other than large sample properties, little is known of the properties
of these estimators. 1In addition, the iterative computations often

encounter convergence difficulties,

The situation regarding the estimation of fixed effects parameters
(means) is similar, With balanced data, the estimates are not affected
by the presense of a non-scalar covariance matrix and they are UMVU
estimators. With unbalanced data, maximum likelihood leads to weighted
least squarns estimators which depend on the unknown variance compo-
nents. The properties of fixed effects estimators computed using

estimated variance components are unknown.

The present paper discusses two contributions to the study of mixéd
models, First is the development of a new class of unbiased estimators
for the case of unbalanced data which have simple, closed-form expres-
sions. These expressions allow easy computation of variances which,
when compared to minimum variance bounds, show the estimators to be

highly efficient.

The second contribution discussed is the development of diagnostic
methodology, based on the estimator, for assessing the effect of the
data on the estimates. The source of negative estimates of variance
components is often revealed by this methodology, as well as other

sorts of instability and problems with the model or the design.
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E« An overview of the methodology and its growing literature will be
5 given, Applications of the ideas developed will be discussed in the
context of several industrial problems for illustrative purposes.

It is to be stressed that the methodology applies to random and mixed
models, whether factorial or partially nested and whether balanced or
unbalanced. Indeed, completely nested designs have been succesfully
analyzed by this methodology by Hocking and M. S. Von Tress, but will
% not be discussed here. Also not discussed here is the distribution

theory developed by Green and J. Grynovicki.

Wy The problem of estimating variance components is shown to be equli-

valent to the problem of estimating the covariances between appropriate

i related observations. A covariance is naturally estimated by the cor-

g responding sample covariance., 1In fact, almost every covarariance, © ,

K of the relevant sort can be estimated in an unblased and efficient ¢

§ manner by a simple average of sample covariances, all having the same

‘:::E expect'ation and all simply related to Bt. or else, by simple linear

te functions of such averages. In balanced cases, these sample covariances -
;g have the same distribution. 1In any case, they provide diagnostic %
g' power for examining the quality of the estimgte of Ot. The diagnostics 'ﬁ

are directly in terms of the effect influential factors have on

! parameter estimates of interest. Thus, only features of the data

'$ impacting on variance component estimates are highlighted. For small s
i problems, these diagnostics are conveniently displayed in tables, as X
g shown below. For larger problems, the diagnostics can be displayed ?
‘E in simple plots, as indicated below and described by Green (1987). 3

: For very large problems, reduction formulae, given by Green (1988)

are available to reduce the demands of these displays to managable N
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levels. These are also discussed below. Since there are, in fact, many
ways to generate meaningful diagnostics, these same formulae allow one

to change from one representation to another, and even to increase the

rumber of diagnostic elements.

2, THREE- AND FOUR-FACTOR MODELS

To motivate the procedure and introduce som: general notation, con-
sider a model with Pactors 1, 2 and 3 ( or 1, 2, 3 and 4) with Factor i

having a levels. Let r =a -1, a =aa,°t = ¢t , etc., Let
i i i 12 1 2 12 1 2

r = a =1, Suppose there are nij # 0 (or in the four-factor case,
0 0 k

n # 0 ) observations in the indicated cell., The empty cell problem
wiigtbe reported on at a later date, although a brief discusslon is

given by Hocking (1987). Five model will be described to introduce the
AVE-estimator and the diagnostic procedure. Two parameterizations are
given., One is standard. The other is equivalent, but suggests both the
diagnostic philosophy and the AVE-estimator, as well as an alternative
statistical model which is more general than the usual model and has

intuitive appeal.

2.1 Five Designs

To introduce the two parameterizations, consider the following three-

and four-factor designs.

Design 1. Factors 1, 2 and 3 are crossed, 2 and 3 are fixed and

l is random.

Design 2. Factors 1 and 3 are fixed and crossed, Factor 2 is random and

nested in 1.

Design 3 is the same as Design 2, except Factor 1 is random.
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Design 4 is the same as Design 2, except all factors are random.
Design 5. Factors 1, 3 and 4 are crossed, 2 is nesced in 1, 1 and 2 are

random and 3 and 4 are fixed.
2.2 Statistical Models for ‘he Five Designs

In the case of design 1, a standard model is
(2.1) y(ijks) = M(3jk)+ A(i) + AB(LJ) + AC(ik) + ABC(ijk) + E(ijks),
where M(jk) is the population mean of responses at levels jk of factors
23 and the others are independent O-mean normal random variables with
variances ¢ ,0 , 9 , ¢ and ¢ , regpectively, and y(ijks) is the

1 12 13 123 0

s-th responge at levels i, j, k of factors 1, 2, 3, respectively. It is
useful to compute @ , the covariance of distinct observations at the
same level of facto:s indexed in t and at different levels of all other
factors. Also, © will denote the total variance in the response. Thus,
e =¢ +8 in the three-factor case. The covariance structure in
desigg llfg given by:

(2,2) Cov( y(ijks), y(i*j*k*a*) ) =

0 LE Lpiw
8 =9 LE Lwi#, Jpik, khk#
1 1
@ =0 + LE Lymitih, kpk*
12 1 12
6 =0 +¢ LE ikwitk*, k9
13 1 13
8 =+ +d +0 LE 19k=i*jrk#, spa+
123 1 12 13 123
@ =0 +0 LE Liks=l*inkrgh,
0 123

It should be observed that the parameterization given, in partic-

ular, the independence assumed of the "random effects", does not re-

strict the model, Rather, it indicates which of several equlvalent S
#:E:E:
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parameterizations is used. The covariance structures for the other
designs follow.

Design 2.

(2.3) y(ljks) = M(ik) + AB(Lj) + ABC(ijk) + ABC(ijk),

where M(ik) is the population mean of levels ik of Factors 1 and 3, re-

spectively, and the other terms are O-mean normals with variances ¢ ,

12
o and ¢ , respectively. The covarlance structure is given in (2.4).
123 0
(2.4) <] - @
12 12
e =0¢ +
123 12 123
e =0 +6
0 123
Design 3.

(2.5) y(ijks) = A(L) + AB(Lj) + M(k) + AC(ik) + ABC(ijk) + E(ijks),

where M(k) is the population mean of Factor 3, level k and the other

terms are O-mean normals with variances ¢ , o , ¢ , ¢ and ¢ , re-
1 12 13 123 0
spectively, The covariance structure is given in (2.6).
(2.6) e 2 ¢
1 1
@ =0 +0
12 2 12
@ =0 +0
13
6 =0 +d +0 +9
123 1 12 13 123
e = ¢ +0
0 123

Design 4.
(2.7) ylijks) = M + A(Ll) + AB(ij) + C(k) +AC(ik) + ABC(ijk) + E(ijks),
where M is the mean and the other terms are 0-mean normals with varil-

ances ¢ , 0 , 0,0 ,0 + . The covarlance structure is in (2.8).
1 12 3 13 123 0

(2.8) e =¢
) |
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:; e = O-'.‘ w
¥ 12 1 12
!: o -0,
, 3
e = w + 0+ ¢
. 13 1 3
4 e = ¢ +0 +¢ + 0 + 0
: 123 1 13 123
ia (<] = 0 +e
N 0 123
N Design 5.
é (2.9)  y(iikes) = M(kt) + A(L) + AB(1§) + AC(Lk) + ABC(ijk) +
4 AD(it) + ABD(1jt) + ACD(ikt) + ABCD(ijkt) + E(ijkts),

where M(kt) is the population mean of responses at levels k and t of
factors 3 and 4, respectively, and the other terms are independent, 0-

mean nornals with variances o , & , o , o P B ' O y O
1 12 13 123 14 124 134 1234

™ and ® , respectively. The covariances are given by (2.6), excluding O,
' 0

;ﬁ: and by

Tom
i (2.10) 8 =D +0 +p +0

‘ 134 1 13 14 134

8 =0 +0 +0 +0 +0 +0 +0 + 0
1234 1 12 13 123 14 124 134 1234

e -Q + 8

0 1234
with ¢ and © analogous to © and © + It is evident that esgti-
14 124 13 123
mation of the ® is equivalent to estimation of the & . There are two
t t

0

§ advantages to the @ parameterization. First, these covariances are
i t

$ rather naturally estimated by corresponding sample covariances. This

estimation ldea is the basis of AVE-estimator introduced (for unbalanced

i designs) in Hocking, Bremer and Green (1987), hereafter éalled (HBG). It

5 is equivalent, in the balanced case, to the usual ANOVA estimator (HBG),
Green (1985, 1988) and offers an efficient Hocking (1987), (HBG)

ﬁ alternative in the unbalanced case. A second advantage is the pos-

. sibility of a more general formulation of the model in terms of the

= AT

% mean and covariance structure of the response vector, y. For example,

-

?'Qﬁﬁﬁﬁ?

. in design 1, the model can be specified by writing
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\
’p:

E[ y(ijks) ] = M(3jk) and COV ( y ), as given by (2.2), J$
The only restriction on the covariance structure is that the covariance ~é§
matrix be positive definite. This is true if all the ¢ are positive, ﬁﬁ:
but also under more general conditions which permit individual g&i
"varlance" components to be negative. Expliclt requirements for pos- ﬁﬁ“

itive definitness are given in Hocking (1985). Since physically, a

negative covariance is possible ( See Green(l1988), for an industrial 2m$
X oy
setting in which a negative covariance is guite sensible), this more 3@%
P .
general formulation has some appeal. It also provides an explanation 2ﬁi
178

for. the negative variance component estimates which frequently occur. AN
The validlity of the AVE-estimator or the diagnostic procedure does by

hinge on acceptance of this alternative model. %ﬁ&

2.3 Estimation of Variance Components Arising from the Five Designs ﬁﬁg
(AN
I
It is natural to estimate the covariances ® by corresponding kégg
sample covariances. This is the basis of the dla;nostic procedure., In ﬁ%ﬁ
the balanced case, the estimates found are the usual estimates obtained &%ﬁ
from an AOV table ( Henderson's type H3 or SAS type 2 ). *%?
0y
Some simple notation is introduced to facilitate the procedure. )
The general form is given in Green (1987, 1988), (HBG) appropriate for :é?
any design., For the present, forms needed for three or four factors are -;ﬁ
glven, These contain all the basic forms required in general. They ‘
are not tied to any particular design. éég,
To estimate the covariance, @ , between observations at the same %:t:
level of Factor 1 but different letels of Factors 2 and 3, one of the é?.
e
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following three forms is used.

-1
(a r ) J.C(L/jkj*k*).

0

12.11) C(1/23)

23 23
(2.12) C(1/2:3) = (a r a ) 12C(l/jkj*k*).
23 2 3
-1
(2.13) C(1/3) = (a3 ra) Y C(L/KK*).

In (2.11), the sum is over all a r pairs of distinct levels j#j* of
Factor 2 and all a r pairs of dfsiinct levels kkk* of Factor 3. 1In
(2,12), the sum 133039r the a r pairs of distinct levels of Factor 2
and all a x a pairs of level: gf Factor 3, whether or not distinct.

In (2.13)3the35um is over the a r pairs of distinct levels of Factor 3.
In (2.11) and (2.12), 3

-1
(2.14)C(1/3ki*k*) = £ Zi ( Y(3kO)=F (. 3ke) ) YOAI*R* ) =Y (I k> ) ),
where y(ijk.} is a cell mean and y(.jk.) is an (unweighted) mean of cell
means. (2.14) is a sample covariance of cell means at the same level of
Factor 1 and at indicated levels of Factors 2 and 3. (2.13) is the aver-
age of forms of the sort (2.15), which is a sample covariance of the

average responses of Factor 1 at indicated levels of Factor 3.

(2.15) C(l/kk*) = a ¥ C(1l/3jkI*k*)
2 I3

T ):i( ylioke) = ¥(aeke) ) (YU k* ) = Y(okby) )
Justification for using unweighted means of the cell means in the un- \

balanced case is discussed in (HBG) and is as follows. Begin with the 44%
balanced case, where the forms are clearly reasonable. (HBG) shows .9
that in the unbalanced case, If one uses these forms for all possible ned
balanced submodels of minimum cell frequency and averages these A
estimators over all such submodels, the resulting average is the AVE-

estimator as described here. Which of the forms to use in a problem

100

AR S

. :'l. ‘_»L_ O e A l\“ 'P‘. u."\.r “\;\\F \\\\\

-..,-..'-. PRy w.»

‘x‘ x-‘»l k!!ﬁup‘ﬁ- oo 1"9"9":0 m' M ':::‘v“ '»-'\0' DO,




.
.:si?..'
is determined by the nesting and fixed factors in the design and Q@ﬁ
...i
is explored below. ‘_",..',
.
0‘n':..
To estimate the covariance, © , between observations at the same &ﬁﬁ
12 ﬂ‘[f',{
level of Factors 1 and 2 but different levels of Factor 3, (2.14) or one ﬁﬂk
l‘n';.“.:u
of the following two forms is used (in a three-factor model). Y
|'.;.'i;-
-1 R
(2.16) C(12/3) = (asra) Y C(12/kk*), 5:323‘31
LR
-1 Q)
(2.17) C(1,2/3) = (a r ) 2 C(i,2/kk*), .
13 3 e
|°.-‘.;<
where the first sum is over all a r pairs of distinct levels k#k* of $ﬁ$§
3 3 'llgl
Factor 3 and the second sum is also over these and over all a distinct f&ﬁf
1 ]
levels of Factor 1. Here, ey
=1 - - - n':::“:::
(2.18) C(l2/kk*) = r 3 ( ¥(ijka)=¥(. ko) D YILIk*)=¥ (. k*) ) ), o
12 7 13 e
l.n'l‘,v"'
RN
-1 W
(2.19) c(i,2/kky) = ¢ F ; ( ¥(idk)=y(doka) )V y(idk* ) =y(l.k*) ). ’f’
i
'.'?.:‘5:
In all forms, by permutation of the indicies, one obtains analogous ﬂ@”ﬂ
RS
forms appropriate for estimating the other covariances. Now consider &:im
N
the five designs stated above. g%?%
Pt
Design 1. j% o
o
©" -AVE = C(1/23)
1
(2,20) 8 =-AVE = C(2,1/3)
12
8~ -AVE = C(3,1/2)
13
Design 2,
(2,21) @~ -AVE = C(1,2/3)
12
Design 3.
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. -1 :.u
. @ -AVE = C(1/3) =~ a C{1,2/3) B
X 1 2 o
4 (2.22) . -1 &
o @~ -AVE = C(l/3) +ra C(1,2/3). o
| 12 2 2 "
4 Design 4. ,
i L
4 ©~ -AVE and @~ -AVE are as in Design 3. Y
n 1 12 :ﬂ:;
2 o
(2.23) ©"~ AVE = C(3/1:2) R
i o
Y ©~ -AVE = C(1,3/2) + @~ -AVE, et
o 13 1 s
; "
. )
K Design 5. "
-1 ‘a‘:‘l‘-_
) (2.24) ©° -AVE = C(1/34) - a * C(1,2/34) o
¢ 1 2 i
¢ -1 :ﬁ:
K @~ -AVE = C(1/34) + r a * C(1,2/34) - g
12 2 2 ‘%:
_': '."
:; _l ";"
’ @~ -AVE = C(3,1/4) - a * C(13,2/4) Y
) 13 2 o
i -1 " ‘.
N ©~ =-AVE = C(3,1/4) + r a * C(13,2/4) é
p 123 2 2 £
l. '.(
a The estimators for the l14-and 124-interactions are obtained from those 5&
M .|.“.
v for 13 and 123 by interchange of indicies. o
&
] >
H 'ﬂ-
' In all cases, the highest order term (© or © ) suggests no v
kY 123 1234 X
- sample covariance estimator, since, if the model is correct, the order of
'g ohservations within a cell is arbitrary. Also, some terms of highest gﬁ
; order in the non-nested factors are not well-represented by sample co-~ ;Q
W J
? variances of the obvious type. However, an AVE-type estimator can be o
, by
5 be based on deletion methods. Such are discuased in (HBG). )
d 5
i :-'.
\ 2.4 Estimation of Pixed Effects :
- 0%
Y 1
: Similar unweighted means are used to estimate the fixed effects. u
; o
. 102 &
]
" e , ~a
Al V.,&k'ﬂi&h\: } :"fkf:";n ;:‘s .;Q FPX"Q’- x\.."‘t }.‘J cf'ﬁfl. :.r: .‘2 (n X Q‘b‘ :; :: “': }-. "..‘ J'\ *'- ‘. i“il, ‘.“.n ) f‘. o .‘~ " “h
0'..1! o'a'o.'.,llhh.lg,,h.u AR a.. ..l A o .. J“a. ‘ 0.|| W . -' Wi .. £ oy ] P" ' .| oY l _.



ey
It will be : @
noted that the estimators of the fixed effects in a balanced J%*
desi i ; o
gn are linear combinations of the cell means. The idea of a :5::.:.::
. veragin D]
over all possible designs of minimum cell si . ging .5::.
. size (provided that size is e
ze ) V
ro) leads to the same linear combination, except that with 3?&
unbalanced 3
ced data, the cell means are based on different numbers of ob ﬁ%ﬁ
- DN
servations. The result is to replace an e ﬁ@
225 _ -1 xpression such as R
25) M(14)" = ¥ (an) y(ijks)
ks 3 s
. ',('-
in the balanced case by ::::ii
el
(2.26) M(13)" ) -1 i
* j) -AVE = a Z (n ) N
ijks). e
3 ko i3k Xs” Jks) K
(HBG) contains a d : i
iscussion of fixed effects estimation in unbal o
factorial models H anced s':i:‘%*
. Hocking (1987) continues this discussion, with ‘;"5’”
ref . ’ & .“f,.;
eference to partially nested models, Further joint work on thi ki
n ) )
latt i
er topic is expected to appear soon. ::3‘3
i
e
ryn
2.5 Display a [
play and Use of Diagnostics Sﬁ%
".'4:0:,:*
::‘iﬁtl".
t"‘:"“ -
Now that the b =
e basic forms are evident, attention can turn t 0
use. EaCh term C(p,V/d) is an avera t ° thEir :'l‘:":.::
e the ge of sample covariances, all of which .":.;::
same expectation. In design 1, the , e
oo ' general representation TN
m Green (1988) gives the forms (2,20). The AVE-estimator of e
‘ f of 6~ )
is €(1/23), which is the average of the a ; ; 1 -:'::::
r /2 distinct sampl o)
lances C{1/jkj*k*), for 3§ # i*, k # k* 23 23 ple covar- :m‘_
an unbiased ti o + Each of these covarianaces is N i
estimate of 91. They can be displayed in a table, such e
Table 1, which shows a = 2 and = ) as N
a 4. In this illust e
s table qives 2 3 ration, one 4-by- W
gives all the diagnostics. The off-di L
i d . e off-diagonal elements are the 1'
ple covariances. Since this t i e
able i i
s not symmetric, all off-diagonal Ny
QO
":::::\
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elements are printed. The diagonal elements are not true variances,
since j = 1 and j* = 2 there, while k = k*, If two tables were given,
one could compute and report the following variances.

(2.27)  C(1/3k3k) = rzl L ¥(iika) = ¥(.3k.) )2.

Under the usual assumptions for this design, all diagonal elements have
the same expectation, as do ali off-diagonal elements. The table is
examined for outliers and patterns, Green (1988) gives moments of
these diagnostic elements. 1In this example, the elements C(l/jkj*k*)
for jk, j*k* = 12, 13 and 13, 22 stand out as much larger than the
othef entries, Also, the diagonal entries for k = 2 and kK = 3 are much
larger than the other diagonal entries., This suggests further exami-
nation of the two combinations indicated. 1In a paper presented at the
Gordon Research Conference, August, 1987, and being prepared by the
present authors for publication, this table was part of an analysis
which detected a process shift in data from an actual chemical produc-
tion process. This point will be elaborated on below. One use of such
tables is the detection of problems in the underlying assumptions made
about the model. One conclusion drawn for the chemical data is that a

violation of this sort occurs. A physical consequence is the need to

redesign the production line to make a uniform product,

A second application of these diagnostic tables is the detection of
spurious data. The second point is illustrated in the context of a
wool fiber example discussed in Green (1987). The design is Design 2,
witha =2, a =5, a = 23. The estimate, C(1,2/3), of 8 1is the

1 2 3 12
average of the sample covariances C{i,2/kk*), i = 1,2 and k # k* = 1,..,

23, A tabular display of these diagnostics would require two 23-by-23 %i
tables, an unpleasant prospect. In the above cited article, these y
104 ®
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2.6 Reductions in Size of Didplays

If neither tabular nor graphical display seems feasible, Green
(1988) offers algebraic reduction formulae and partial summing methods,
which, together with the general moment formulae developed there, allow
smaller tables to be constructed which retain most of the diagnostic
power suggested by these examples. He describes a six factor design
which would require the display of 15,680 sample covariances. This
seems an unreasonable demand. The reduction formulae cut the required
display to 840 sample covariances, a reduction of 94 %. Further reduc-
tions are possible through partial summing of the diagnostic forms,

as described in the context of a glass manufacturing exanple.

Consider now design 5, with diagnostic forms given by (2.24).
Green (1988) considers a glass manufacturing example with a = a = 5,
a =2, a = 3, These forma require displaying 630 diagnostic elgments.
Agter appgylng the reduction formulae, a display of C(13,2/4) is still
required. Conceptually, the terms C(ik,2/tt*) are displayed in table
form. Perhaps, for each value of i and k, an a -by-a table is con-
structed, the off-diagonal terms of which are tge sam;le covariances,
The below-diagonal terms need not be displayed, since the table is
symmetric. Diagonal entries are sample variances, which also carry
diagnostic information. In the example, this requires 25 3-by-3 tables,
a rather onerous requirement. The graphical displays discussed above
can be used if the number of terms is moderate. Even these digplays
may be problematic for larger values of a , a and a . A simple remedy
is to work with "partial sums" described éelog. In t:e glass example,

the forms (2.24) can be replaced by:
106
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(2.28)
C(l1,2/4), with 15 elements
c(1/4), with 3 elements
C(13,2/4), with 30 elements through

-1 -1
a ziC(ik,Z/tt*) and a ). C(lk,2/tt*)
1 3 Tk

(2.28a) (2.28b)
C(14,2/3), with 80 elements through

-1 ' -1
a ziC(it.Z/kk*) and a Ztcm:,z/kk*)

C(3,1/4), with 15 elemants

C(4,1/3), with 9 elements.
This gives a tcotal of 152 diagnostic elements, a reduction of 75 %. As
shown by Green (1988), the remaining elements have essentially the
same diagnogstic power as a full analysis. Further reduction is possible
in the last two terms. 1In thls example, there are so few diagnostics in

in these two that further reductlion makes little sense.

The analysis now is in four parts. (1) Outlier analysis associated
with each table finds those estimates more than 2(J away from the mean
for that table. (2) In the case of tables for the partial sums, if,
say, for some i, one of the off~-diagonal terms in (2.28a) stands out,
then a table of C(ik,2/tt*) for just that i is constructed, or else a
univariate analysis of the estimates C(ik,2/tt*) is done ( either
using stem-and-leaf plots or a printout of values outside a 2- or 3-0
confidence band). (3) Next, a "pattern analysis" of the tables may
bring out special patterns. There should be no pattern to the tables
if the statistical model assumptlions are correct. (4) Next, the

the data set is examined to seek statistical cause for what was seen
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(1)=(3).

Each table shows appropriate, equal-expectation, sample covariances

" off the diagonal. Since these tables are symmetric, below diagonal

'r LI

b .,.i “";.5

terms are omitted., The diagonal terms in these tables are variances, and

always have equal expectations under standard assumptions.

To continue with the illustration, Table 2 gives the diagnostics
(2.28a), The entry for i = 5, tt* = 12 stands out a&a. large. This can be
judged by inspecting either the table or a gtem-and-leaf plot, or with
the ald of a 20 confidence band centered at the average value 6!
(2.28a). In this last regard, the following variance formula is helpful.

(2.29)

-1 2 2 2
VAR (Form 2.28a) = (ar ) ( a (® - ) +r (&8 -8 ) + (0-0 ) 1.

32 3 124 14 3 12 1 134

From this, the standard deviation is 311.0 and the average value is seen
to be 329.,5 Similar computations apply to the diagonals. A printout
of the forms C(ik,2/tt*) for 1 = 5, tt* = 12 outside a 30 confidence
band shows k = 3 and k = 4 account for the initial large estimate.
This in turn leads to an examination of the relevant data, where a large
difference between the values for j = 1 and j = 2 is found at these

locations. A complete discussion of this data is given in the cited

article, but this should indicate how the "reduction" techniques work.

In connection with the above analysis, the first two momemts of the
diagnostic forms involved in (2.28) are needed. General closed-form
expreassions for moments of the required type are given. These are

functions of the ® and apply to balanced and unbalanced cases.
t
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2.7 Repeated Measures Experimrnts

X
v

Grynovicki and Green (1988) contains a discussion of this method- ﬂf?
ology to repeated measures experiments. 1In the example described there, gﬁf
the diagnostics lead to the discovery of two populations of subjects %§$
not properly taken into account in the study and which raise serious ;ﬁ%

questions about the validity of conclusions to be drawn. The existence
of these two populations had not been previously suspected. Applications fﬁﬁ
toc other repeated measures experiments, such as medical experiments, are R

readily apparent.

2.8 Computations oy

Ty

%@J

I“.'a':‘

The computations involved in constructing the tabies or plots pre- g@ﬁ
sented above are minimal. Standard statistical computer packages will do %Sﬁ
A

all calculations required, though some manipulation may be required to R
print the diagnostic tables in a useful format. For example, SAS PROC ﬁﬁ;
CORR, with the COV option will compute sample covariances and even %ﬁi

display them, often in appropriate form. The plots require additional ﬁ%ﬁ

":”"t

data manipulation, but again standard packages have the requisite ;@%

440,

capability. All computations discussed here were done using SAS. ,Wﬂ
]

f 'I’.;li

B

The reduction and partial summing ideas discussed make this method- il

l.|'l

olnogy applicable to designs of all sizes., BSince the methodology also ﬁ?ﬁ

applies regardless of the degree of imbalance and to a large class g§?-

s

of mixed models, it can be seen to be useful in a wide variety of ?ﬁﬁ

o) ab

problems. !
Ca YO

WA

i

R

109 R

I

™ N A N Ny I ;‘l‘n’l‘.‘l‘ “\ ﬁ\

f [y V‘ A’ P\ ‘ ‘
R k-'x'}e"t.\ .~::,-.. . m”‘i" -" B ‘«--

:0 u‘ " 't"s' AR -loh 'nt "fo“" \5‘ .‘.'::;::




2,9 Efficliency of the AVE-Estimator

(HBG) and, more definitively, Hocking (1987) contain discussions
the efficiency of the AVE-estimator. This is done by comparing the
small sample variances of these estimators with lower bounds for this
variance, as given by Bhattacharya (1946) in an ilmprovement of the
usual Cramer-Rao lower bounds. Closed-form expressions for these bounds
are not known, but they can be computed numerically for specific
designs. Buch computation is reported in the cited articles for a
varlety of cell frequency patterns and parameter values. Among the
conclusions reported there are the following.

1. The AVE-estimators of both variance components and fixed effects
are very efficient,

2, The efficiencies are monotonically increasing in all parameters.

3. The efficiencies depend on all parameters but the variances do not.

4. When compared to Yates' method (or the method of welghted square of
means or SAS type 3) or Henderson's method (or the method of fitting
constants or SAS type 2), there is little reason to distinguish
among these estimators on the grounds of efficiency, although

the AVE-estimator is generally superior except for small parameter

values,

3. OTHER LITERATURE

The first article on the general diagnostic philoscphy described
was Hocking (1983) which applied these ideas to balanced randomized
block designs., Alternative models, such as discussed above, which

allow for negative estimates of variance components, were discussed by
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Smith and Murray (1984) for ceértain two-factor models, but no diagnos-
tics were described there. The first major development of diagnostics
was glven by Green (1985), a dissertation written under the direction of
Hocking. Results based in part on this were reported by Hocking (1985)
and Hocking and Pendelton (1985). It deals with balanced, random models
only, but, with minor changes, applies to mixed models. Matrix expres-
slons for various diagnostic forms and moments are given which simplify
computations by hand or computer for balanced designs. Since most
dlagnostic forms in the unbalanced case are unweighted linear functions
of the cell means, many results from the balanced case apply with

little or no change to the unbalanced case, Hocking and Bremer werelthe
first to notice the unbalanced extension. Some results from this

source will appear in a more available format in the near future,
Regults from (HBG) are discussed in (HBGb), although in the conference

proceedings, an administrative error omitted one author's name.
4. CONCLUSIONS

A diagnostic procedure has been shown to be both intuitively simple
and effective in judging the quality of variance component estimates,
It applies to both small and large problems. All calculations, displays
and plots can be (and were) done by standard statistical computing
packages, The diagnostics are themselves eatimates of the components
in question, and, as such, indicate in a straight forward manner, what
impact various features of the data have on the overall estimates. Only
features of the data affecting the parameter estimates are flagged. The
methodology applies to both balanced and unbalanced designs with no

missing cells. A sound theoretical basis exists for the procedure. In

1
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Y the balanced case, the overallr estimator based on the diagnostics is a
standard one obtained from equating mean squares to expected mean
squares, whereas in the unbalanced case, the estimator is new and com-
;f pares favorably with standard estimators in terms of efficlency. 1In
ﬁ addition, in the unbalanced case, the estimator is in closed form,

which simplifies both computation and theoretical inquiry. Also of
ol importance is the fact the method applies in any random or mixed model
w to all components of variance other than the highest order in the non-
nested factors, and even to some of these, without modification, as well
0 to fixed factors. With some modificatlion, these estimates apply to these

wl . [

o highest order terms as well.

0 The diagnostic methodology brings out many noteworthy features of
R the data directly in terms of their effect on parameters of interest,
Even for large data sats, the tabular and computaticnal requirements are
4] modeat. The reduction formulae and univariate confidence interval

y approach reduce the need for tabular displays to a reasonable level,
Unbalanced models are handled in the same way as balanced models, and

e with little added trouble. The methodology is sufficiently flexable to
W allow the user to tailor some computations to suit the needs of a
particular problem, yet sufficlently standardized to be easily learned

b or programmed.

N 112

4 Y O t.h-ia

j:!‘: :":::::'}E:‘:"’.'::"ﬁ‘ ::.EE:: ?gfhg h‘ !".,t |“’\' !:'lu * '* f & “?. &:W e W'ﬂ ( o' R

'.‘L_bk.‘“ |' k ‘L..!l!. ;_k\‘_._.ﬁ



TABLE 1. Diagnostics C(i/jkj*k*) for @

Chemistry Data : W

=1 STEM & LEAF ot
k n.: o
1 2 3 4

6.8 16.7 14.6 9.7 30 |23 o
20h ﬁe&
11.7 31.5 33,2 12.2 20 |3 e
10h|5777 e
10.5 31.1 27.1 17.3 10 |0122 o
0 |8 K
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o TABLE 2. Diagnostics a 3  C(ik,2/tt*) .
A 3 K \
) Glass Data ;
N "
E* \
;-: STEM & LEAF 1 2 3 by
' ‘:
P 10 | 0 1 7 -43.5 -8, 3
.: 9 |2|
& 8 | 2 £ 2 156.0 = 1.2 L =1 it
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THEORY OF SEMIREGENERATIVE PHENOMENA

N.U. Prabhu
School of Operations Research and Industrial Engineering

and Mathematical Sciences Institute
Cornell University, Ithaca, NY 14853, U.S.A.

: We develop a theorﬁ of semiregenerative phenomena. These may be viewed a8 a
family of linked regenerativef enomena, for which Kingman ([6],(7]) developed a theory
within the framework of quasi—Markov chains. We use a different approach and explore
the correspondence between semiregenerative sets and the range of a Markov subordinator
with a unit drift (or a Markov renewal process in the discrete time case). We use
techniques based on results from Markov renewal theory.

: Semiregenerative phenomena and sets, linked regenerative phenomena,
quasi~Markov chains, standard phenomena, stable states, lifetime, Markov renewal
processes, Markov additive processes.

. Let theset T be either [0,w) or {0,1,2,..}, E a countable
set an % P) a probabllity space.

Definition 1. A semiregenerative phenomenon Z = {Zt ) (t,€) € TxE} on a probability
space (2,5 P) Is a stochastic process taking values 0 or 1 and such that for (tr,lr) € TxE
(r21), with 0 =tg<ty Sty JEE wehave

PZy y =% 4 = =2, =1|Zy =1
(Zy g, = Lot g, = HZy=1)

I
= ]I
i=

For each f¢ E, denote Z[ = {Zt ptE T}. Since

P{Z =12 =1} (¢ = j).
Py g = =1 (=)

P(Z, y= Ly g= =2y = 1]Z =1
{2y =2y ¢ = HZy=1)

r
=P{zt1[= 1|2g; = 1} I Pz

= 1|Zny=1

Zyisa (possibly delayed) regenerative phenomenon in the sense of Kingman [7] in the

continuous time case T = [0,»), and a recurrent event (phenomenon) in the sense of Feller
[5] in the discrete time case T = {0,1,2,...}. The family Z‘ == {Z) £e E} Is afamily of

linked regenerative phenomena, for which a theory was developed by Kingman [6] In the
case of finite E; later he reformulated the results in terms of quasi—Markov chains
(Kingman [7]). We explain this concept below.
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Example 1. Let J = {Jt' t € T} be a time~homogeneous Markov chain on the state space ::‘

E and denote g

zte = I{Jt=£} for (t,£) € TxE. (3) ‘:3'

The random variables Zt ! satisfy the relationship (1), which is merely the Markov 's

property. More generally, let C be a fixed subset of E and X

Zyp = I{Jt'_'e} for (t,£) e TxC. (4) éq

These random variables also satisfy (1) and thus Z = {2, 5, (t,£) € TxC} Is a t
(siexgiregenerative phenomenon, In particular, suppose that C s a finite subset of E and

efine e

E K, =J, if J,€C, and =0 if J C. (5) E
Then {Kt' t € T} ls & quasi—-Markov chain on the state space C U {0}. o ‘;,

While the quasi—Markov chain does provide a.good example of & semiregenerative ':f

phenomenon (especially in the case of finite E), it does not reveal the full features of these 5

phenomens; In particular, it does not establish thelr connection with Markov additive A

processes. 'Thus, let @

¥

b ¢={(t,¢) e TxE: Z; p = 1}. (6) 0
We shall call ¢ the semiregenerative set assoclated with 2. The main theme of this paper i

is the correspondence between the set ¢ and the range of a Markov renewal process (in the "

discrete time case) and of a Markov subordinator with a unit drift (in the continuous time "

case). Kingman ([7], p. 123) has remarked that assoclated with a quasi—Markov chain o
. there is a process of type F studied by Neveu [9). The Markov subordinator we construct g
for our purpose is indeed a process of type F, but we concentrate on propertles of the s

. ﬁgﬁg ]c; this process. For a detailed description of Markov additive processes see Cinlar :‘,;
119) ) o

To complete Definition 1 we specify the initial distribution {aj, j€ E}, where ¥,

)

. o
. » S,
with a, 20, Za, = 1. As In the case of regenerative phenomena, it can be proved that the o

| relation (1) determines all finite dimensional distributions of Z and that Z Is stronﬁly o
regencrative (that is, (1) holds for stopping times). We shall write PJ and EJ for the W
probability and the expectation conditional on the event {ZOJ =1}. ::

E In the discrete time case we call Z a semirecurrent phenomenon and denote g
| U(n) = P{Zyy = 1|2y, = 1} (8)

- where ujk(o) = i In the continuous time case let 4

iy, 0y
)
‘u':':“
s
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: . e
ij(t) =P{2, =1 |zOj = 1} (9) ,:;.‘:5
R
where ij(o) = G- The phenomenon is standard if ,
Py(t) + dy a8 t-0+. (10)
In this case it is known that the limit b
1 = Py(t) i
lim ——-@J— (J € E) (11) i
t= 0+ e
Is known to exist (possibly infinite); if this limit is finite, then j is said to be stable. ‘,f;a‘,;gj,
,Qﬁ_".f"
We consider semirecurrent phenomena and provide some examples. The maln result ;
is that the semirecurrent set ( correspnnds to the range of a Markov renewal process b
(MRP) and conversely, & semirecurrent set can only arlse in this manner. For details of hogs”
the results from Markov renewal theory used in this paper see Cinlar ([4], Chapter 10). We N
construct a Markov subordinator with a unit drift whose range turns out to be a s
semiregenerative set. In the case where E s flnite we prove that every semiregenerative a0
set corresponds to the range of a Markov subordinator. Our approach yields results T
analogous to Kingman's (FI], Chapter 5) for quasi—~Markov chains. While our approach il
(based on Definiton 1) is thus more rewarding in these respects, our techniques are P
simpler, being based on propertles of Markov renewal processes. Bondesson [1) has ei?h
Investigated the distribution of occupation times of quasi~Markov processes, We shall not R
| investigate this problem for semiregenerative phenomena. '{'W
| In the literature there are extensive investigations of semiregenerative processes. A
These are processes imbedded in which there is an MRP (or equivalently, a semirecurrent bty
phenomenon). We take the view that semiregenerative phenomena are important b ot
themselves and therefore worthy of studi. Iri{particular, the theory developed in thfa paper e
provides a proper perspective to the work of Kulkarni and Prabhu !fs] and Prabhu [10]. by
fc‘_,:,'é',
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Invited Paper 15.1
46th Session of the ISI
Student:
A Tool for Constructing
Consultation Systems in Data Analysis

William A. Gale
AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ, 07974

1. Introduction

Knowledge-based consultation systems (often called expert systems) have become common in the last
decade. Outside the field of statistics, several commercial systems have been built. Within statistics
progress has been limited to methodological feasibility studies, baginning with REX (Gale and Pregibon,
1982; Pregibon and Gale, 1984; Gale, 1986b). Since then Muse (Dambroise and Massotte, 1986),
Express (Carlsen and Heuch, 1986), and unnamed systems by Berzuini and others (1986) and Darius
(1986) have been described.

I mention these first level consultation systems to distinguish Student from them, Student is more than a
consultation system, since it is primarily a tool to help a statistician build such consultation sysiems.
But since Student also serves as the vehicle for the constructed knowledge-based consultation systems, it
includes the capabilities of the first level consultation systems.

Smdent is designed to allow a professional statistician to build a knowledge-based consultation system
in a data amalysis technique by selecting and working examples and by answering questions. The
statistician does not need to know the internal representation of the strategy demonstrated, and does not
need to know how to write a knowledge based program. He does need to be fluent in the underlying
statistical system, a more natural expectation of a statistician,

REX is a working demonstration of the type of consultation that Student will provide. It allows a

| novice to use advanced regression techniques safely by systematically checking the assumptions of the
techniques. It provides guidance to what tests need to be done and when, interpretation of the results of
tests and plots, and instruction in statistical concepts. It has appeared that REX, while designed for use
by novices, is interesting o expert statisticians, because it makes explicit much knowledge that has not
been formalized. Most experts have also expressed interest in using such a consultation system because
it automates many tasks that they know they want to do, but don’t always do.

Like REX, Student is based on an underlying statistical analysis system, and constitutes an interface 10
that system, Student uses Quantitative Programming Environment, QPE. (Chambers 1986) as the
underlying system. Briefly, QPE has been designed as a successor t0 S (Becker and Chambers, 1984).
The extemnal syntax and appearance have been largely maintained, But QPE was designed to be an
environment, that is, to contain programming, browsing, debugging, and editing capabilities. The design
of Student assumes that the statistician using Student to create a consultation system knows how to use
QPE.

A methodological prototype study of Student (Gale 1986¢) was built using Lisp and a Symbolics
machine. The current version of Student is intended as a product definition study, It is programmed in
the language provided by QPE, since this would be the most likely delivery language for a product. The
goals of the QPE version are to study issues such as speed, usefulness to statisticians, and generality of
the conceptual framework used by Student. This version is currently a partially developed system that
has only begun to be used by statisticians. It has not yet begun to answer the product issues posed, but
shows the knowledge acquisition methods more clearly than the prototype, and has begun to be used to
acquire a few different data analysis strategies.

By using QPE, hardware and software requirements are minimized. QPE will run in most Unix™
environments, Wherever QPE runs, Student will run. Student is not a product, but if it were, it would
require a machine with Unix, and QPE software.

This articale appeared in the Bulletin of the International
Statistical Institute, Vol, 52, pp 1-18, Permission of the
author and the editor of that journal to reproduce it here
is appreciated,
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What Student adds to the capabilitics of REX is the capability to acquire its knowledge base by
interview and demonstration. The demonstration approach was proposed by Gale and Pregibon (1984),
and tested in the Lisp prototype (Gale 1986¢).

The knowledge base used to conduct a particular method of data analysis has been called a strategy,
and the term will be used here. Section 4 defines strategy. Briefly, a data analysis strategy includes
knowledge about the kinds of problems that can occur in using the method, how to test for them, what
to do if they occur, and how to communicate the problems and solutions to a novice user.

The importance of acquiring a strategy by interview and demonstration is considerable. In the current [
state of building knowledge-based consultation systems, two distinct roles, usually played by two

different people, are standard. One is the role of subject matter expert, and the other is the expert in the

inference engine used, or knowledge engineer. In building REX, 1 played the knowledge engineer,

while Daryl Pregibon played the statistical expert. This procedure requires the knowledge engineer to

learn a lot about the subject matter, or the subject matter expert to learn a lot about the inference engine

and programming, or both,

Student’s primary goal is to allow a statistician, who does not know how the inference engine is built, to
build a knowledge based consultation system without the involvement of a knowledge engineer. This
should support greater efficiency in building consultation systems in data analysis.

There is a substantial secondary benefit as well. A statistical consultation system will be used in many
other ground domains, such as physics, psychology, or business analysis. Current Al techniques are not
adequate to handle knowledge in multiple domains, so we built REX with the explicit assumption that
the user was willing to learn statistics concepts and vocabulary. This assumption will be reasonable for
many analysts, but it will be unreasonable for many managers or low frequency users of statistics,

Student provides the means to specialize the knowledge and vocabulary used to guide a consultation in
data analysis. Because it can lean by interviewing a statistician using locally relevant examples, it can
be provided with strategies shaped to local environments. This will increase the market size for a
Swdent-like product as compared to a REX-like product.

Another significant benefit of removing dependence on a knowledge engineer is the capability to
specialize a system to a local environment, When Student is first acquired by a group such as a quality
engin¢ering group, a specialist statistician can select examples from the group's files and work them in
the Student environment. After this specialization training, the engineering experts would use Student
for consultation, retuming to the statistician with problems beyond its training. When such a problem
seemed frequent, the statistician would work it as an addition to the strategy. If it seemed infrequent,
then it would be worked by hand.

There have been three main challenges in building Student. First, the system had to support the
acquisition of the first example. In a rule based system, the first rules to be acquired are typically
different from later rules, because a rule based system uses a core of rules to encode control information,
A subject matter expert would not be able to provide control information.

Second, Student had to acquire knowledge from a new example that was consistent with its previous
examples. Consistency means that all the examples that the statistician considered as properly worked,
remain so when the additions to the strategy are made.

Third, the system had to support deliberately inconsistent changes to strategies over a long period of
time. Current technology, such as used for REX, results in a "compiled" strategy, which is difficult to
change.

The current version of Student has made clear that the first two of these challenges have been met, and
it suggests that the third can be met. These challenges have been met by the development of an
artificial intelligence technique called knowledge-based knowledge acquisition (Gale, 1986e).
Knowledge-based knowledge acquisition means restricting the domain of knowledge that can be
acquired, and developing a conceptual model of the restricted domain.

Student is restricted to acquiring data analysis strategies. It is not a general purpose knowledge
acquisition program for a general purpose inference engine. With this restriction, 1 have been able to
provide a conceptual model for sirategies of data analysis. For instance, we know we have to deal with
data sets, and we have provided representations to deal with them. The conceptual model specifies that
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the analysis consists of looking for violated assumptions, and if found, of finding a cure. It specifics
that we look for violated assumptions by making tests and by showing the user plots. I derived this
conceptual model by inference from REX, and by considering extension of the methods to other data
analysis techniques, Having this conceptual model provides enough structure to guide the user throngh
the first analysis of a given kind, and to acquire additional consistent examples. It is still a research
question how far this view based on work with REX will generalize, and how well inconsistent changes
can be treated.

Student is writien in modules that fall into three groups: control, data structure management, and
leamning. The data structure management modules can be distinguished as managing primitive or
composite structures. Student then acquires knowledge by filling in data structures, which become a
significant part of the system. The control and data structure management modules are nearly
independent of statistics knowledge. The learning modules are specific to data analysis. This paper will
focus on the learning modules.

The ideas for Student were proposed by Gale and Pregibon (1984), and tested in a Lisp prototype by
Gale (1986c). The current QPE version is a partially developed system intended to explore issues
relevant to making a product. It is on the leading edge of the line of research applying artificial
intelligence techniques in statistics for the benefit of statistically naive users (Gale, 1986a; Haux, 1987).
Qur statistics depariment has begun to use this version of Student to better define the requirements for a
useful product.

2. The Appearance of Student to the Statistlcian

The appearance of Student to the statistician is partially conveyed by the following transcriptions of
sessions with Student. The sessions show how a statistician begins to instruct Student, This phase
demonstrates most clearly the knowledge built into Student, as opposed to the knowledge that it
acquires.

2.1 Introducing a New Data Analysis Method !

In the first session, work is begun on a strategy for a data analysis technique new to Student. This is
the first stage of building a new consultation systemn. The example supposes that spectrum analysis
(Bloomfield 1976) is to be defined for the system. The statistician’s entries are shown by a ">" and
boldface text. The computer’s screen output appears in italics.

>student( )

Do you want 1o

1. get a consultation from me
2. instruct me in a sirategy
>2

There is no currently selected analysis. Do you want
1. univariate description

2. simple regression

3. New Analysis

>3

Please type a word for the name of the new type of analysis ( analysis)?
>spectrum

At least one variable is mandatory for spectrum analysis.
What is the name of the first required variable? |
>time.series

f Each input variable will be copied to a standard OPE variable.
( What standard name would you like to use for the time series variable?
>X
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time series is now the required variable for spectrum analysis,
Please enier another name for another required variable,

or '’ (dot) if there are no more,

S5

There are no optional variables now. Please
enter a name for a variable, or '.' (dot) if there are none,
S .

Notes on the session to this point:

The session begins from within QPE by calling student just as any other QPE function is called. Since
Student is built within QPE, it is easy to use Student for routine analyses, switching to the full power of
QPE if the analysis becomes non-routine.

The first point that Student must establish is whether the user is a statistician who wants to instruct
Student, or a consultation client. This is essentially a branch to two entirely different programs which
share the same data structures. The data structures are acquired from statisticians and used for
consultng.

Student then asks which analysis will be worked on. Any existing analysis may be modificd by a
statistician. Notice that the list of options provided is a dynamic one that depends on what kinds of
analyses Student knows about. Also, the option to add 2 new kind of analysis is only shown if the
mode asked for was student.

The reason we know that we must have at least one mandatory variable is that we are doing data
analysis. There may be other mandatory variables, and there may be optional variables. This is a clear
and simple example of how the restriction to data analysis provides information which enables
knowledge acquisition. By organizing the information about data analysis as much as possible, we try
to build a formal cognitive model of data analysis.

The session continued:

Analysis Revision Menu

1. select or define analysis (specirum now)
2. create a new strategy {copy or construct)
3. define a new example

>2

There is no existing sirategy 1o copy.
Please type your last name.
>pale

Please type a word (o use for the strategy name
{or just a '’ (dot) to accept "gale" as a default).
>, '

Analysis Revision Menu

1. select or define analysis (spectrum now)
2. create a new sirategy (copy or construct)
3. define a new example

4. select a strategy

5. delete a strategy

6. stabilize a strategy

7. refine the gale strategy

>7
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' Strategy Refinement Menu
1. show strategy & statuses

|‘ 2. select or define an example
>1

NA.ininputs oK
final calculation OK

Notes on the continuation.

Once an analysis is selected, the top level menu becomes the analysis revision menu, An analysis is
needed to select the dynamic eniri¢cs to the menu. The menu shows that with a minimally defined
analysis, we can define a new strategy or a new example.

The session continued by defining 2 new strategy. The system records the name of the author of the
strategy, and gets the date it is begun from the operating system.

Communication requires many names, and they have to be convenient for the people using Student
Thus, Swmdent needs to ask a fot of names, Wherever possible, the system suggests a default, but the
final choice is up to the statistician.

After creating an empty sirategy, the analysis menu has expanded. Before there was a strategy, there
were none to select or delete, so there was no sense offering these options. A strategy is "stabilized" to
make it available for consultation. So long as a strategy is considered stable, it can be used for
consultation, and it cannot be modified. This is just a reminder lo the statistictan, since it is simple to
stabilize and destabilize, or to copy a stable strategy and modify the copy. But it is important that the
statistician carefully consider which strategies Student will be allowed to use for consuliation.

This session is ended as Swmdent shows the two minimal features automatically created for any new
strategy. QPE provides "NA" as the result when asked to take the logarithm of a negative number, or to
divide by zero. Student infers from NA’s in wansformed variables that inappropriate mathematical
marnipulations have becen made. The lmowledge about the limits of the functions is thus distributed
among the functions themselves. If it were not there, it could be provided as background knowledge,
but there is no reason to duplicate the knowledge. This does mean that sirategies need to specify what
should happen if an original inpot contain NA’s, The feature initially provided will detect NA in any
input, but awaits learning what to do until some example triggers it. The other feature initially provided
is an empty shell to place a final calculation and report into.

Before the strategy extension cycle can be begun, an example must be provided.
2.2 Introducing an Example

In this session, Student is shown the existence of a new example, No demonstrations can be made
without examples, so this step is necessary to continue constructing a consultation system, The user hag
selected simple regression analysis (Mosteller and Tukey 1977) for this session, at a point just after
defining simple regression and one minimal strategy named "basicsr.”

Analysis Revision Menn

. select or define analysis (simple regression now)
. credate @ new strategy {copy or constrici)

. define a new example

. select a strategy

. delete a strategy

. stabilize a strategy

7. refine the basicsr strategy

>3

[~ N VO S

Please type a word to use for a short name for this example.
> brain.body

Please type a word 1o use for the response variable dala set,
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> brainy

Please type a word to use for the explanaiory variable data set.
> brainx

Do you have a weight variable for this example?
> no

Please type a brief description of the brainbody example.

> The response varisble is the average brain weight in grams,
the explanatory variable is the average body weight in kilograms,
for 62 terrestrial mammalian species. Data from Weisberg, p128.

Notes on this session:

The simple regression data analysis method was defined to have two required inputs and one optional
input. The required inputs are called "response” and "explanatory”, and the internal QPE names are "y"
and "x". The optional input is called "weight” and its internal name is "w." This session shows how
the information acquired by Student is put to use and becomes difficult to distinguish from the
knowledge it starts with,

If the short name had been chosen as "brain," the sysiem would have located "brain.y™ as a data set
named by concatenating the short name and the internal name of the response variable. It would have
assumed that the data set was so named precisely to be used as the initial input for the response
variable, It would likewise have found "brain.x" as a data set for the explanatory variable. As it is, the
system has checked that the data sets of the given names exist. It then constructs code to assign these
initial values to the data sets "y" and "x." It does not execute this code now, but stores it as part of the
definition of the example.

The system did not find a data set named "brain.body.w", so it asks if there is a weight variable for this
specific example. When it leamns that there is no weight variable, it uses stored code describing how to
gencrate default values for the weight variable, The code used was acquired by demonstration during
the initial definition of the simple.regression analysis frame.

The description of the example is treated as unprocessed text. It is available to those modifying a
stmategy to see what examples the strategy was developed with. Asking for it is a reminder to the
statistician that the information will be needed by others later. It is probably easier to give this
information now than in the future, The reply given here shows that there is information that could be
broken down and some of it made available to the machine. The meaning of each variable, their units,
the sampling units, and the source of the data might each need to be asked individually,

2.3 Strategy Extension

This session shows the usual cycle for strategy extension. It begins with a mimimal strategy for simple
regression. [ have shown this session without the full menus, only the menu line selected by the user as
the user’s input.

Analysis Revision Menu

> 7. refine the basicsr strategy
Strategy Refinement Menu

> 2, show examples and evaluations

brain - unanalyzed

Strategy Refinement Menu
> 3, select an example
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The only example available is the brain example.
> 4, analyze the example

beginning to consider NA.in.inputs feature with no argument
beginning to consider final.report feature with no argument

Strategy Refinement Menu
> 5. REVISE sirategy by inserting a new feature

Which feature is the last one correctly analyzed?
1. none of the below are correct

2. NAin.inpus(none)

3. final.report(none)

>2

Please type a word to use for a name for the new feature.
> skewness

Please tell me why skewness is important for simple regression.
> The skew points are unduly influential.

Please type a word 1o use for a name for this test (the ... test),
| or just a . (dot) to accept skewness as a default.
I -

l Please type a word to use for a QPE name for the test statistic,
or just a’.’ (dot) to accept skewness as a default.
>,

Type 'return()’ to make your last expression define skewness.
Student: qtls<-qUi(y) #quartiles of y
Student: gtls
(4., 1725, 169.)
Student: (qtls[3]-qiis12])/(qtls[2]-gtls[1])
11,4528
| Student: return()

The value of skewness on this example is 11.4528.
What preliminary LOWER [imit de you suggest?
> 1.5

What preliminary UPPER limit do you suggest?
>3

The interpretation of the first test result is severe.
Is this your intention?
> yes

This test has just one inpus variable. This can be treated

as an argument if you want, but doing so will make the result
unavailable to further computation.

Do you want this to be a feature with an argument?

> yes

Please type a word to use for a short name for this transform (the ... transformy).
> log
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I am setiing up a temporary environment. Please show me how to make a log
trangform by providing code to redefine ALL NECESSARY input variables,
ENDING with a redefinition of y.

Type 'return()’ to make your last expression define y.

Student: tog(y)

(3.79549, 2.74084, ...

Student: return(}

You have shown me: expression(y <- log (v })

is this a satisfactory definition of the log transform?
> yes

The log transform will reduce the problem severity from severe to mild.
Is the log transform acceptable to you?
> yes

Committing (o the log ransform.

Strategy Refinement Menu
> 4. analyze the example

beginning to consider NA.in.inputs feature with no arsiiment

beginning to consider skewness feature with argument y
maldng log transform

beginning to consider final.report feature with ro argument

Notes on the session:

All strategies for a given analysis method share the same set of examples, each defined by specifying the
input variables. Each strategy has its own records about how well the strategy has analyzed the
example. Each example has status unanalyzed, acceptable, or unacceptable. To start with, an example
is unanalyzed. After a strategy revision, all examples arc marked unanalyzed.

After selecting and analyzing the brain example, it is found to be unacceptable, because there is no basis
for declaring it acceptable. One action possible for an unacceplable example is to declare it is
acceplable. Then it is so marked, and the pattern of transformations and their reasons (featres of
arguments) is stored, Any other analysis that makes the same sequence of transforms for the same
reasons will be automatically marked acceplable. An acceptable example can be declared unacceptable,
which causes the pattern to be stored as a known bad pattem.

The other options for an unacceptable example all revise the strategy. The session shows one way o
revise the strategy, by inserting a new feature. Other ways include deleting a feature, and revising a
feature, To insert a feature, we must know how far the analysis is considered comect. Then the new
feature will be inserted so that it will be tested following the last correct feature.

The acquisition of a test shows the system collecting code to define the test. The statistician is in a
stightly medified QPE environment, free to examine data known to Student, call on any predefined QPE
functions, and to plot as may be useful. The modifications are that the user may not refer to data not
known to Student, and may not make an assignment to a global variable known to Swdent. When the
user types 'return()’, a legal QPE expression with a special interpretation here, control returns o
Swmdent. The program then cleans up the series of expressions into a minimal set required to define the
desired variable. In the example, the line on which the statistician examined the values of the quartiles
will be deleted.

Smdent will infer lower and upper limits from the statistician’s actions over many examples. But when
there is only one example, the induction method fails. Therefore a set of preliminary limits is requested.
Their importance declines as more examples become available, The preliminary limits can also be set
by an automated Monte Carlg method, but it is too slow for interactive use.
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The syslem examines the code produced, and finds that only one variable was used to define skewness,
In such a case, generalization is frequently useful. It simplifies the process of reconstructing any given
value 10 have such generalized functions not be used in further calculations, This appears o be
acceptable in common cases where generalization is useful. If it is unduly restrictive, a more complex
internal method can be programmed.

The system then asks for a demonstration of what 1 do if skewness is found w be a problem, A
transform specifies each input’s new value. The previous values of the inputs and intermediate resulis
based on them are available for the new specification.

Student always creates a lemporary environment when it considers 2 ransform. The transform is made
in the temporary environment, and the test for the feature is applied. If the result is still unacceptable,
the transform is not committed, but the original environment is restored. This procedure is followed
even on the time that Student is shown how 0 make the transform.

This completes the demonstration of the skewness feature. Student now works the example by making
the log transform of the response variable. The next step will be to show it that the skewness of the
explanatory variable needs to be examined. This will be much shorter 10 show, since the same feature
can be reused with a different parameter,

| 3. The Kpowledge Acqulsition Method
3.1 A Critque of Knowledge Acquisition in REX

Developing a strategy for use in REX was a labor-intensive process. Two phases can be distinguished,
In the first phase the statistician responsible for the strategy, Daryl Pregibon, chose a half dozen
regression examples that clearly showed some frequent problems. He then analyzed them using
interactive statistical software with an automatic trace. Afler analyzing the group of examples, he
studied the traces and abstracted a description of what he was doing. We coded this as a strategy for
REX and tried it on a few more examples. He revised the strategy completely at this point, and the
second phase began.

In the second and longer phase, one of us would select one additional regression example and run REX
interactively on the chosen example. Since we selected the example knowing what would stretch REX,
REX usually reported a severe problem that it didn’t know how o fix. Then we would modify the
strategy so that the example would be handled. This process was iterated through about three dozen
more examples.

Based on this experience, and on a feeling that it was typical of other techniques, we do not believe it is
possible to build a data analysis strategy without working through many examples. One must make
many decisions 1o build a strategy, and there is no literature simplifying the task. Therefore the only
available defense of a strategy is to demonstrate performance, which requires working many examples
more than those used to build the system. On the other hand, our experience also leads us to believe
that it is easy o generalize from data analysis examples. The basis for gencralization is usually a
statistical test that statisticians can provide. Generalization then consists of determining the range of
values of the test for which the demonstrated technique holds.

However, the way in which we worked examples for REX was far from idcal. The first difficulty with
our method was assuring ourselves that a strategy modified to work one additional example still worked
all previous examples. We could by brute force run REX in batch mode on all previous examples and
see if the performance was the same. Usually we reasoned that most of the previous examples could not
be affected, and checked the few that might be affected by hand. Naturally, the more examples worked,
the more severe this problem became. The necd to check consistency in batch mode for a system
designed to be interactive reduced the flexibility of the strategy developed.

Second, the method used was the epitome of the currently standard two-person development of expert
systems. I built the inference engine used while Daryl was responsible for the strategy developed.
Whenever Daryl wanted to do something he hadn’t done before, we had to huddle, as Daryl was
learning a language he would only use to build one program. In a department with twenty professional
statisticians and one person intimately familiar with the inference engine, it was not clear how many
additional data analysis techniques could be handled by this two person approach,

135




IP-15.1

Third, it would be difficult to modify the strategy in REX. Modifiability is important because a growing
literature on strategy (Gale, 1986a; Haux, 1986) can be expected to suggest desirable changes. It is also
important because users will probably want to medify strategies to their particular needs. However, the
first two problems would make this difficult: to specialize the program a local statistician would have to
learn a language used by no other program in the world, and the modifications made might inadvertently
destroy some capabilities of the strategy.

However, the development of REX contributed greatly to following work. It provided us with the
beginnings of a conceptual model for data apalysis: a data analysis consists of a desired calculation,
assumptions required for the calculation to be meaningful, tests for the violation of the assumptions, and
transformations to ameliorate the violations. The classes of frames used in REX provided us with an
initial list of classes of primitives that has remained useful and has been expanded into a fuller
conceptual model of data analysis.

3.2 Knowledge Acquisltion ln Student

The necessity of working examples to build a data analysis strategy suggested the possibility of
acquiring strategies directly through that process. A systemn should assist the teacher in establishing
consistency across all examples worked, and should not force a statistician to learn an obscure language.
It appeared that examples might provide a language suitable for communication between statisticians and
cOm puters.

The first issue encountered in designing Student was how to learn from the first example. In a system
without knowledge, there is simply no basis for use of information provided in working an example. By
providing Student with the conceptual framework induced from REX, we have built a system that can
deal meaningfully with an example even when it has seen no previous examples. The rather limited use
of code collection in Student shows how much of the knowledge it is acquiring is not knowledge that
could be inferred from just watching the analysis of an cxample. Even for the parts heavily dependent
on code, if the system did not have some notion corresponding to "plot”, "test”", and "transform", it
would not be able to deal with code having these different functions. In short, understanding the first
information provided is possible because the system is limited to data analysis, and because it has been
possible to build a conceptual framework for data analysis.

The conceptual framework used in the current version of Student has the fifteen classes of primitives
shown in the following table. Each instance of a primitive is represented by a frame. In the table,
indentation shows that names of instances of the primitive indented occur as values in some slot of the
superordinate primitive. That is, the relation shown by indentation is *‘uses information from.”

analysis
input variable
example
feature
test
plot
transform
report
strategy
linear
conditional
repeated
concept
class
consultation

Each primitive has a set of slots, which are also chosen to reflect the structure of data analysis. As an
example, a simple primilive is the input variable frame, which has only a few slots:

input variable
external name of input
required or optional
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degfault if optional
data type
internal variable name

The content of the instances of these primitives is the information that a consultation system must have.
For instance, when asking a consulting client for a specific input, it is necessary to know the common
name of the input. Likewise, the system must know whether to insist npon having a given input
variable before beginning the analysis (required or optional}, and what default to use if the user does not
have an optional input. The system must also know what data type the input requires to determine if
submitted data is possible. Since we do not want io overwrite input data with later calculations, we
need a standard variable name to copy the input to.

Knowledge-based knowledge acquisition in this context means specifying how the contents of each slot
will be acquired. For the input variable primitive, each slot could be acquired by asking the teaching
statistician. Most of them could also be acquired more actively. The intemnal name could be created
from the exiernal name and perhaps a unique number. Acceptable data types could be inferred from the
data types of the inputs to the set of examples provided. Optional variables and their defaults could be
inferred as those with repeated inputs. It seemed better in each of these cases to ask the teaching
statistician and then use the information to check inputs to teaching examples.

Thus, specific techniques designed for the specific knowledge in each slot were chosen. Student uses
four specific techniques: interviewing, limits induction, Monte Carlo leaming, and background
knowledge.

Most cases are handled by interviewing. Knowing what is needed, and having a statistician at hand, it is
casy 1o just ask. Even so, exactly how to ask for the information varies between menus, fill in the
blank, multiple simultaneous choice, and free response. And of course the prompts vary with the item.

Monte Carlo learning can establish initial notions of the distributions for test results, The distributions
in turn can be used to set initial cut points, or limits for distinguishing severe, mild and insignificant
cases of assumption violations.

Limits induction is inference of limits on test ranges from test results and action (transform) or non-
action by the swtistician, Let v; be the value of a test on the jth data set, and a; be T or F as the
statistician acted or didn't act. Set the lower cut point as max(v;|a;=F) and the upper cut point as
min(v;1a;=T). Then for test values above the upper cut point, the statistician has always acted, and for
values below the lower cut point, the statistician has never acted. This simple scheme is slightly
modified to include the Monte Carlo results.

Knowledge-based knowledge acquisition has several advantages. First, the information in each slot is
necessary for a consultation program. Systematizing the knowledge 10 acquire from a statistician speeds
consiruction becanse the system won't forget what is needed.

Another advantage of knowledge-based knowledge acquisition can be shown in the acguisition of an
input variable. It is almost always appropriate to run a number of tests on each input variable by itself.
Without knowledge-based knowledge acquisition each time a new variable is given, a battery of tests
must be specified by the teaching statistician, However, it is easy to keep track of what tests have been
used for all input variables by data type, and to suggest these to the statistician, Since the tests are
based only on knowing the data type of the input, they will often be appropriate in many different data
analysis procedures. The domain knowledge we are using here is thal the tests are similar in many
different analysis types, and that they are reasonably organized by data type.

As another example, a statistician may notice after some time of programming that an optional input
variable is possible, One would then back up and increase the generality of numerical procedures to
accommodate the extra variable. With knowledge-based knowledge acquisition, the statistician is
encouraged to think of optional inputs at the beginning of the construction process, thus aveiding the
costs of reprogramming. This encouragement may not always be effective, but it can only work in the
direction of reducing the problem. In short, by providing a framework for data analysis, the statistician is
encouraged to think in previously successful terms,

Acquiring first examples does not address all the problems in building a knowledge acquisition system,
However, the domain restriction has been useful for exiending a given body of knowledge as well as
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beginning it. Extension of knowledge for a given data analytic technique involves demonstrating more
assumptions, how {0 detect their violation, and how to fix them. The same techniques used for initial
acquisition suffice here. However, it is also necessary to check consistency for previously worked
examples,

Knowledge-based knowledge acquisition has also been useful for dealing with consistency as the number
of examples and the strategy have grown. Consistency means that after incorporating information on a
new assomption, the recommended analyses of all previously worked examples are not changed. This is
a requirement analogous to logical monotonicity. Some changes can be proved consistent by using
domain knowledge. The domain kmowledge consists of a theorem, and the proof consists of verifying
the hypotheses of the theorem, so this is not automatic theorem proving. The proof may use data that
conld be specified and collected when the previous examples were demonstrated. This will be more
efficient than rerunning examples. Other cases, such as showing that a new test is not passed for an old
example, require new calculations. Domain knowledge is able to specify data to save that will make
such checking faster than completely reworking an example.

Of course, the check may find that a change is inconsistent. That is, that the recommended analysis for
at least one previous example has changed. Then the statistician will need to revise the existing body of
knowledge. This might just consist of blessing the revised analysis for the inconsistent examples. Or it
may require revising the strategy, perhaps revising the assumption just added. This can be assisted by
domain knowledge encoded as editing procedures.

3.3 A Critique of Knowledge Acquisition in Student

Interviewing is useful. A knowledge-based interview is easy to write, since one knows exactly what to
acquire. Interview procedures attached 1o slots are easy to keep track of, so that it is casy to see if all
slots can be acquired.

A research issue¢ is how much can and should be acquired by interviewing, and how much must or
should be provided as initial knowledge. The Lisp prototype tested this by attempting to acquire
everything by interviewing. It appeared that everything could be acquired this way. However,
experience with this extreme approach led to deciding to provide some items as initial knowledge. The
collected reasons used to justify initial provision of an item were

(1) distractingly frequent requests for information,

(2) richly structured information,

(3) stable and non-controversial information.
For example, data types (vectors, matrices, time series, ...} are being built in for reasons 2 and 3. An
initial core of technical definitions will be provided for reasons 1 and 3.

The original idea of programming through demonstration of techniques on examples needs further
development. In the Lisp version of Student, demonstration of examples seemed slow and clumsy. As
Student has developed, the settings in which demonstrations occur have been restricted to key points
about a particular example, so that the demonstrations become short sequences in a weil understood
setting. This has helped, and it is useful when describing a plot or test to have an example to do the
operations on immediately. However, the process is still not flexible enough to allow exploration and
final selection of one of several approaches tried. The statistician needs to approach the system with a
clear idea of what will be demonstated. There is, however, key information in the examples and I
believe the current system is a useful start towards a more flexible system.

We found in building REX that the most powerful explanations in statistics were not verbal, but
graphical. Thus we programmed before and after plots for each transformation. Student is able to make
these automatically from plots acquired while being shown how to detect an assumption violation. This
is a convenience.

Monte Carlo learning seems like a technique with much wider applicability for statistical systems to
learn about statistical tests. Its use will be limited to overnight applications.

Limits induction is apparently a useful idea. It can describe what a statistician has actually done,
possibly pointing out a poorly worked example, or a poor test. It can be used to alert statisticians to
taking an action that is not consistent with previous actions, but can be changed easily if they insist.
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4. Statistical Strategy Representation {n Student
4.1 Goals for Representation of Statistical Strategy

This section discusses what is meant by statistical strategy, how strategy is being used, and why it is
being studied. The purpose is to derive the goals that must be met by representations of statistical
strategy.

The term statistical strategy has been used to denote integrating previously known tests and
transformations into coherent total approaches to data analysis. Although the term was suggesied by in
1981 by Chambers, there is as yet no generally accepted definition of this term. Daryl Pregibon and I
(1982) suggested that strategy would answer questions such as

“‘What do I ook for?"*

*“When do I look for it?"’

**How do I look for it?"

““Why do I look for it?"’

““What do I have 10 do to look for it?""
Wayne Oldford and Steve Peters (1986) wrote ‘‘The term ‘statistical strategy’ will be used here to label
the reasoning used by the experienced statistician in the course of the analysis of some aspect of a
substantive statistical problem.”” David Hand (1986) stated “‘statistical strategy has been defined as a
formal description of the choices, actions, and decisions to be made while using statistical methods in
the course of a study.” These definitions give the general flavor of the subject matter beginning to be
addressed and for which representations must be sought.

A more informative view of what strategy must mean can be derived by examining the situations in
which we want to use it. To this end, I would like to review two views of the data analysis process that
have been proposed by Hand (1986) and OQldford and Peters (1986). Hand discussed four stages of
analysis, while Oldford and Peters distinguished four levels of strategy. That is, Hand was concerned
with entities which take place at different times, while Oldford and Peters’ description is a classification.

Hand's four stages are (1) formulate aims, (2) translate into formal terms, (3) numerical processing, (4)
interpretation. These stages were given specifically as stages in a multiple analysis of variance
{(MANOQOVA), but they appear to me to be general. The first stage is concerned with what dependent and
independent variables are involved, how they are related, and what questions the researcher wants to
explore. It is largely phrased in the language of the ground discipline. The second stage results in the
translation from a problem statement in the ground discipline to a problem statement in statistics terms,
The third stage consists of estimation, testing, data cleaning, and transformation. This stage functions
within the statistician’s language. The fourth stage consists of translating back to the ground domain.
As Hand points out, there will be various loops in an analysis, returning to earlier stages to alter
decisions.

Oldford and Peters suggest 'operational level' as a scale for thinking about procedures. At the lowest
level are standard numerical procedures of statistics, such as least squares fitting or robust fitting.
Selections from this level constitute the minimal components of a statistical package. Just above this
level are such sub-procedures as collinearity analysis and influential data diagnosis. Each of these
presupposes the existence of procedures in the layer below it. Above this layer lies a layer of
techniques, such as regression analysis, specttum amalysis, or analysis of variance. The top-most
identifiable level has strategies for analysis and for design.

The levels idea rests on a notion of a procedure using other procedures as building blocks to carry out
its goals. The notion of stages is that of what is done first. The relationship between them is that the
high level strategies are used first and more frequently. The low level strategies are used later if at all.
Thus the higher levels of a hierarchy of techniques will correspond to the preliminary stages of a study.

4.2 Intentlons In Studylng Statlstical Strategy

One intention in studying statistical strategy is clearly to respond to the programming opportunitics
available. All the programs discussed in the introduction can be said 1o have as their goal to help
people choose statistical methods. This will require research by statisticians about how one should
choose statistical methods. The strategy representation then should be usable by statisticians in
communicating among themselves.
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Since the current uses of strategy are for programs, the representation must be interpretable by machine.

The assumed users of all the programs cited appear to be untutored in statistics. Therefore, it will be
important to interpret the numerical statistics in English. The strategy representation needs to ease
preparation of reports on what has been done.

Implicit in the choice of technique and application of technique uses is the opportunity to assist users in
many different techniques. The representation must then be capable of expressing how to make the
required choices in many different data analytic techniques.

Another possible use of strategy is for statistical education, By clarifying what feateres the various tests
and plots are designed to detect, when various features should be sought, and how to respond if they are
found, it should be possible to educate students more effectively. A representation suitable for education
may be considerably different from one for consultation, based on Clancey’s experience with Guidon
(Clancey 1984). Without a setting in which to test this use, the requirements are unclear.

The goals that emerge for a representation for statistical strategy are that it should serve as a
communication medium between expert statisticians, students, and machines. It should be sufficiently
expressive for strategies in the range of data analytic techniques. The machine uses include both
deciding what to do and reporting why.

43 The Feature/Imperative Representation of Strategy in Student

This section describes the strategy representation evolved through REX and Swdent. Another
representation is described by Gale and Lubinsky (1986), which compares the two representations.

The statistical knowledge in Student is represented by a symbolic network. The lowest level of this
network consists of such things as strings representing commands to the statistical language, strings of
English text to show the user, numbers representing limits for interpreting tests, and lists of past results.
These lowest level entities are grouped into entities that represent such things as tests, plots, report
fragments, and transformations. These are in turn grouped to represent what we call features, and the
features are combined into strategies. This representation can be readily seen to correspond closely to
Oldford and Peters’ description of strategy by levels, although the contents of the lower levels are
different.

Features represent statistical concepts such as outliers, mean, granularity, heteroscedasticity, and
symmetry. When a statistician examines a strategy used by Student, features are the lowest level
exhibited in the graphical presentation. When the Student program examines a strategy, it interprets the
same structure as a set of commands, or imperatively. Thus I have called this representation scheme
**feature/imperative.”” When interpreted imperatively, the sirategy directs the program through a series
of stages, analogous to Hand’s description, but much more restricted in scope. |

The featurefimperative representation has evolved through development of REX, and the prototype study

for Student (Gale 1986¢) to the current design. REX made two major contributions to following work.

The first was a viewpoint for thinking about data analysis as a diagnostic problem. Briefly, one should

list model assumptions (analogous to possible diseases), test the data set at hand for violations of the

assumptions (analogous to symptoms), and if found select a transform of the data (analogous to

treatment). The success of this approach depends on the representation of statistical knowledge. This |
was the second major contribution of REX. REX had a set of statistical primitives including tests, plots,

assumptions, and transforms, which could be built with artificial intelligence techniques such as frames

with slots, or objects with attached methods.

Features, plots, lests, and strategies are entities with enough usefulness as concepts that it is also useful
to establish analogous entities in writing a program. The programing device used to represent these
entities is called a frame, A frame is in the first place a place to store information. Named slots specify
which information can be stored in the frame. Different types of frames are distinguished by what
information will be stored in them. The bare bones of the strategy rcpresentation can then be stated by
describing the types of frames, or primitives, used and what information is kept for each of them.

The Student prototype built on the insight gained from REX, and increased the number of primitives to
ten. The current design for Stdent uses most of the primitives from the prototype plus a few more, as
listed in the section 3. Descriptions of the primitives follow.
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The concept primitive keeps information about technical statistical words. The purpose is simply to be
prepared to define them for users. The more this definition can be tutorial, the better. This is the only
primitive not used directly in the strategy.

The data type primitive keeps information about vectors, matrices, upper right triangular matrices, etc.
There is a small collection of data types with a hierarchical structure. It provides information such as
how to verify that a data set is of the required type, and how to generate a random example for a Monte
Carlo study (Gale and Lubinsky, 1986).

The analysis primitive reflects that Stmdent will handle several analysis techniques, such as regression
analysis, description of univariate data, spectrum analysis, and analysis of variance. The analysis frame
will show how many input variables are required, and how many are optional. It will also show what
strategies are available. The input variable primitives specify such things as name, data type, and
default value.

A strategy is validated by the examples that it works, and it is partially derived automatically from
examples. Therefore each strategy will deal with a group of examples, each represented by an example
primitive. The remainder of the primitives are used 0 express the strategy as a structure built of
features.

The feature, test, plot, and transform primitives originated in REX and have been used in each system
since. They describe how to test for a featre, hoe o show it to a user, and if its presence violates an
assumption, what transforms can be considered to alleviate the problem, The report fragment primitive
has been added to help generate a report. It seems likely to be elaborated.

The preceding discussion described how strategy in a broad sense is represented in Student. A strategy
in the narrower sense of the strategy primitive is described formally as a combination of features. The
| combination used in Student is a programming language restricted by reguiring a simple graphical

display of an expression in the language. This is based on a decision to encourage statisticians to think
about strategy by providing a vivid representation of a strategy. The restriction does not limit the
strategies that can be described, but it may make a description clumsy, In interactive use only the
graphical language is seen by the statistician. However, the formal language underlying the graphical
expression gives it a clear definition of its meaning. It may also be useful as an off line recording and
communication medium.

The language used is formally described as follows:
strategy = item (strategy / empty)

{ item = feature
/if(° feature *)’ (strategy ( 'else’ strategy / empty )
{ “else’ strategy )
/ 'for(’ feature ")’ strategy
feature = test-feature
/ strategy-feature

A
Informally, this is read that a strategy consists of a list of items. Each item is either a feature, a
conditional strategy, or an iterated strategy. A feature is either a test feature or a strategy feature, A
conditional strategy is a test on a feature, with one or two alternative strategics to consider depending on
the test. A conditional strategy is a repcatedly tested feature with a strategy to consider whenever the
test is passed.

The symbols of this language are given meaning by considering each feature, item, and sirategy to be a
predicate having value present or absent. A test-feature (a feature primitive) contains a test that can be
applied to any example and a means of interpreting the test result to state that the feature is present or
absent. This is the “ground truth’” on which the language builds. A strategy is present if and only if at
least one item is present, A strategy-feature has a strategy, and is present if and only if the strategy is
present. A feature is tested according to its type, lest-feature or strategy-feature. A conditional strategy
is present if and only if the selected strategy is present. An iterated strategy is present if and only if the
feature is present at least once and the strategy is present at least once. The feature of an iterated
strategy must have exactly one argument that takes integer values starting with one, The iteration is
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performed over successive values of the argument and terminates when the feature is not present.

This language can be diagramed using a node for each item. The details are given by Gale and
Lubinsky (1986). Examples of the use of this notation for a strategy for unordered univariate
description and the strategy used by REX are given there,

My belief is that this forms an casily leammed language for statisticians, that it forms a sufficiently
expressive language for data analysis strategies, and that it can be easily used by a machine to analyze
data and report on the findings. All these points require further experience before the language is
suitable for a product.

5. Prospective

Key questions still need to be answered before a reliable and easy (0 use program for building
consuliation systems will be available as a product 1t is still not clear how far the conceptual model
provided in Student will generalize, or how far it can be made to generalize. It is not clear how easy
Student will be to work with, or how suitable the interface for statisticians is. The most fruitful avenue
of continued research would appear 1o be 0 focus on statistical strategies, using Student to develop and
compare strategies in commonly used data analysis techniques. We need experience with statisticians
building strategies using Student and with consultations done using those strategies. This experience
will show us what the opportunities are for further artificial intelligence applications.
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ABSTRACT

Student is an expert statistician’s tool for building consultation systems in data analysis. To
use Student, the statistician selects a technique of data analysis and choses examples for
which the technique is appropriatc. The statistician then demonstrates to Student how the
chosen data sets should be analyzed. Various leaming techniques are used by the Student
program to build a strategy for the data analysis technique. These include asking questions,
inference, Monte Carlo leaming, and background knowledge. Smdent tests consistency
between demonstrated examples and the evolving strategy., The statistician can change
either the acceptable method for working an example or the strategy if the two are
inconsistent.

Student is built within the Quantitative Programming Environment, a new generation
statistical system. Use of Student only requires that the statistician know how 10 use QPE;
no other language is needed. Student is being used to build strategies for univariate
description, simple linear regression, and spectrum analysis,

The key artificial intelligence technique used to build Student has been called knowledge-
based knowledge acquisition. This means restricting the domain for which knowledge can
be acquired (to data analysis), and providing a conceptual framework for the domain. The
conceptual framework for data analysis is expressed as a set of primitives representing such
statistical concepts as strategies, features, plots, and examples, A strategy is represented as
a network of frames each of which is an instance of one primitive.

RESUME

Student est un outil expert utilis€ par les statisticiens pour construire des syst®mes de
consultation pour l'anayse de donn€es. Pour utiliser Swdent, le statisticien choisit une
technique d’analyse des donndes et des exemples pour lesquels cette technique est
apppropriée. Le statisticien démontre ensuite au Student comment les bases de données
choisis devraient &ire analysées. Des technique d'apprentissage diverses sont utilisées par le
programme Student pour construire une stafegie pour la technigue d'analyse des donndes.
Ces méthodes comprennent poser des question, 1a déduction, U'apprentissage Monte-Carlo et
les connaissances de base. Le Student teste le cohérence entre les exemples démontrés et la
statégie en cours. Le statisticien peut changer soit la méthode appropriée pour résoudre un
exemple, soit la stratégie si les deux sont en contradiction,

Le Studemt fait partic de I'Environnement de Programmation Quantitative (Quantitative
Programming Environment), un systéme statistique de nouvelle génération. Pour utiliser
Student, le statisticien n’a besoin que de savoir utiliser le QPE; aucun autre langage n'est
nécessaire. Student est utilis€ pour développer des straiégies de description univarice, de
régression lincaire simple et d’analyse de spectre.

La technique-clé d'intelligence artificielle utilisée pour réaliser Student a €€ nommee
acqisition de connnaissances basee sur les connaissances. Ceci veut dire limiter le domaine
sur lequel des connaissaince peuvent &tre acquises (pour 'analyse de donnde), et fournir un
cadre conceptuel pour ce domaine. Le cadre conceptuel pour I'analyse de données
s'exprime sous la forme d’une base d’opcrations des concepts statistiques tels que des
stratégies, des fonctions, des tableaux, et des exemples. Une stratégic est représenté par un
réscau de cadres dont chacun est un exemple d'une opération.
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ON THE USE OF FACTOR ANALYSIS AS A PREDICTION TOOL

Oskar M. Essenwanger
U. S. Army Missile Command
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ABSTRACT;  Factor analysis is generally considered as being ¢ diggnostic tool in
statistical analysis. Since the mathemstical basckground for factor analysis and the computation
of empirical polynomials is the samse, factor analysis can be useful as a prediction tool,

Factor analysis is compared with ordinary regression analysis a3 a prediction teol and
some advantages utilizing factor analysis are discussed. In regression systems the individual
terms are not necessarily {ndependent while the factors are orthogogfi. Predictors which have
a time oecurence later than the time of prediction cannot be inciuded into regression systems but
can be utilized in factor schemes. Furthermore, extreme values are usually underestimated in
regression systems. Thus factor analysis may fare better especially for predictands whose
frequency distributions are U-shaped rather than bell - shaped.

It will be demonstrated that prediction of ceiling height and cloud amount are two
atmospheric parameters which may be predicted better with factor analysis than with a
regression system.

1. INTRODUCTION. ™any statisticians consider factor analysis as 4 diagnostic tool and
prefer ordinary regression analysis techniques for predictions. One of the reasons may be the
simplicity of the regression scheme. In addition, the availability of “cenned programs” found
today even for the small microcomputers {P.C.) contributes to this easy handling. However,
regression analysis has some deficiencies which apply to factor anslysis to a lesser degree. Eg.
a new set of coefficients must be calculated for every added or omitted predictor. 1tisalso
known that predictors are not always independent from each other but the factors in factor
analysis are othogonal. Thus & smaller number of factors {predictors) can achieve the same
amount of residual {error) variance asin regression analysis.

Factor analysis is related to empirical polynomials whilch have been used in predictions.
Consequently factor analysis is & prediction tool, 1n addition, two other facts are presented here
which may faver the use of factor analysis es a prediction tool. 1519 weil known thet regression
analysis is based largely on persistence. I values of a parameter within the prediction intervel
are switching from a large positive deviation from the mean to an extreme negative departure
or vice verse the regression model will fail te account for this variation. Furthermere, only
those predictors known at the time of prediction can be included into regression anglysis. In
turn, factors can be derived from any set of predictors including slements whose value will not
be known at the prediction time.

It will be illustrated in the subsequent sections that for prediction of ceiling height, cloud

cover, or visibility, the factor analysis as a prediction tool may be b e tter suited than
regression techniques, '

2. MATHEMATICAL BACKGROUND, The regression model is based on:
(Y-¥)/S=y (X - %)+ Ap(Rp-%o) + . + A (% -%)) (1)
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In the factor analysis we can write:
(Y-¥)/5=ByFy +Bofp + ... + ByF (2)

where m<n. In the notations ebove ¥ is the predictand, X; are the predictors, F; the factors, &;,
B; are coefficients, and s or 5 denotes the standard deviation.

Examples for eqn { 1) are given below for a prediction model of ceiling height:
¥p =Y-T =192+ 0.425-0.425-1.724 + 2.6Z5 + 0.1Z¢ - 7927 (3}

The predictors (Z; = Xi-gi} in this model are Z; = visibility, 2, = zonal windspesd, Z3 =

-

temperature, Z 4 = relative humidity, Zg = surface pressure, Z5 = ceiling height, and 24 = sky

cover with clouds. Three Torecasts for particuiar days follow where the subscript of the ¥
indicates the hour of the day. In the firstcase ¥ = 999 (synoptic code) at 11 Mona particular

day at Stuttgart (Germany), and Yg = 999 at 08" on this day. The predicted value fromeqn (1)
was 984 which is very close. On the second day Y {1y was again 999 but ¥g = 20. The predicted
value for ¥ ¢ { in this case was 125 which reflects the trend correctiy but misses the magnitude

of the change. Another example of a missed prediction is a case where the ceiling height dropped
rapidly within 3 hours. Yg = 999,Y,{ = 100, predicted 736. Again, the trend is consist but

the magnitude of the change iz missed. 1t will be illustrated later that the factor model in these
cases of rapid change would have rendered a better prediction.

5. CLIMATOLOGICAL BACKGROUMD OF PREDICTANDS, Before the factor modei is
presented we may inspect the frequency distributions of ceiling height, cloud amount and
visibility {(Fig 1-3). It is obvious that ail three predictands do not conform with a bell-shaped
distribution where extremes have a low probability of occurrence (e.g. + 3 sigma = 0.27%).
The other important fact is found in 2 survey of changes of the value of the element withina
short time interval, here 05 AMto 11 AM {Tabie 1). In the last column of Tabies 14, B, C the
change from one side of the mean value (indicated by the double bar) to the other side is
summarized. We notice a change in 14, 9 or 18% for ceiling height, cloud amount, and
¥isibility, respectively. In these cases incorrect predictions by the regression technique
comprise a considerable amount of the total data. In addition, these tases of rapid changes may be
of particular interest to the forecaster.

4. FACTOR MODEL. In this pilot study the first step of the factor model is a factor
analysis whose structure matrix is displayed in Table 2. (For technical details see
Ezsenwanger, 1986, 1987a, b,c) We deduce from Table 2 that factor one is highly related to
ceiling height and cloud amount at 08 AM (GMT) but also to ceiling height and cloud amount 3
hours later. Unrotated factors and rotated factors differ very littie for the first two factors
which are the most important ones (see Essenwanger, 1987a).

The next step is the study of the factors. Table 3 exhibits the mean factors by ceiling
height groups as an example. ¥ hile factor one has a numerical value of - 8.22 when the ceiling
height remains at 999 for the 3 hour time interval the value changes to - 2.40 when the ceiling
rises from <50 10 999 (code in 100 ft). The following predictions cover the two cases where
prediction by the regression mode! failed. In the first case a lifting of the ceiling height from 20
to 522 is calculated while the actual value is 999. This is a significant improvement over the
number of only 125 from the regression model. In the second case where the ceiling drops from
999 to 100 the factor model renders 490 versus 736 from the regression model. Again, a
significant improvement is obtained.
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The predictions from the factor model, aithough considerably better than from the
regression model, may not satisfy some skeptics. It must be stressed that these forecasts are
based on mean factors, and better models may be developed given time and effort. This isonly 4
pilet study. The real factors on these individual days would have resulted in the prediction of the
precise observed value but even the utilization of meen factors was bsiter than the forecast from
the regression model.

5. MODEL COMPARISON. While these individual cases prove that a better prediction with
the factor than the regression medel could have been made in those particular cases il is
necessary to study @ larger dsta sample. Tabie 4 provides a decision tree from observations of
ceiling height and cloud amount at 08 AM to derive the predicted value of ceiling height and cloud
amount at 11 AM. The numbers of ¥ and ¥ 4 were based on the mean factors such as in Table 3

leading to prediction as shown in Table 4. These factors had been derived from & data sample of N
= 200 for Stutigart {1946-1952) in January with a structure matrix as displayed in Table 2.
The squared devistion between predicted values from Table 4 and actual values were summed up
and divided by N and the variance. The results are disclosed in Tables SA, B, C, convertied to
percentage.

The first column provides the results for the assumption that the value of the element is
the same at 11 AM as ot 08 AM (persistence}. The secend and third column Tists the residual
variance for one and four factors, respectively. Finally, the percentages in column 4 are given
for the regression model, utilizilng the observed value of the 7 elements at 08 AM without
inclusion of the ceiling height, cloud amount or vigibility at 11 AM. The latter 3 values would
not be available at prediction time 08 &M but can be included into the derivation for the factor
model.

Inspection of Table S revesls that the residual variance for the factor model is
significantly lower than for the medel based on persistence or the regression model. In fact, the
application of the F-test proves a statistical significance above the 97.5 level (for N = 50 the
thresheld is 1.72, while for N = 200 the 99% value is 1.39 for the variances ratio, e.g. Haid,
1952). Table 5A displays the residual variances (in %) for the three predictands from models
derived for this data set N = 200. Since we learn from Figure 1 that a data gap between 300 and
999 exists. One may suspect an excessive influence of missed extreme values. Therefore,
consideration was given o convert all 999 values to 400 in order to reduce the magnitude of the
variance and deviation from the mean for extreme values. A3 can be seen from the row “CEIL 2°
in Table Sa the percentage figures have changed very Tittle. Thus the dats gap has litfle to do
with the demonstrated improvement over the regression model by the use of a factor model.

it may be arqued that the resulis should be favorable because the coefficients and factors
have been derived for this data sample of K = 200. Thus an independent sample of ¥ = 50 has
been studied. The results are depicted in Tables 5B and C. Two versions were investinated.
Firat (Table SB) the coefficients for the models from the data set of N = 50 were derived and the
same calculations as exhibited in Table 54 were performed. This computation reflects the “ideal
case”. |t permits us to evaluate the degradation which is introduced by utilizing coefficients and
factors derived from a different data sample such as the data of N = 200. Table 5C shows that the
regression model experienced a larger increase of the residual variance than the factor model
evidenced by the increase of the ratio REGR/F 4 from Tables 5B to 5C.

The critical observer may notice that the percentage for the residual variances are also
changed for the persistance model from Table SB to Table SC. It may appear as a discrepancy at
first but it can be explained. The variances in the 200 dats sample are not identical with the
variances in the 50 data sample. Consequently the percentage values change for Table 5Cin
accordance with the differences of the variances. 1t may be assummed that given a large enough
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sample for Tables 5A and 58 this effect would disappear. This effect does not alter the basic
conclusion that the factor model has provided better predictions than persistence or the
regression model.

it may be of interest that the factor model based on 4 factors {Table 5C) did not render
much improvement over a single factor model although for ceiling height and cloud amount the
usage of 4 (mean) factors indicates a decrease of the residual variance (Tables SAand B).
Whether this is a sign of a general trend or a peculiarity of this special data set remains fo be
seen. Mevertheless, the one factor model in this pilot study led to a smaller residual variance
than the 7 parameter regression model.

6. CONCLUSIONS. [In predictions of atmospheric parameters such as ceiling height, cloud
amount, and wisibility, a model based on factor analysis may be better suited thana regression
model. This may be due largely to the poseibility to include predictands into the derivation of
the factor model. A Tactor model has alzo an advantage that only one set of coefficients must De
derived for the task of developing models for several simultaneous predictands. The results of
this pilot study indicate 2 real potential of factor models in certain atmospheric predictions.
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TABLE 1: CONTINGENCY TABLE OF CHANGES OF ELEMENT IN
PREDICTION INTERVAL

(STUTTGART (F.R.6.), JANUARY 1946-1953, N = 250)

A) CEILING HEIGHT (IN FEET)
11 AM

8 AM GMT <5000 5-10000 10-30000 NOCEIL > CHANGE

<3000 1t 4% 4 2 4 64% 6x
5-10000 1t S 4 1 | 11 2
10-30000 1t 2 1 2 1 6 3
NOCEIL 2 ] ] 13 19 -1
2 63 10 6 21 1008 14%

B) CLOUD AMOUNT (TENTH OF SKY COVER)

11 AM
DAMEGMT __ 0-=3/10 6-9/10  10/10 J  CHANGE
0-5/10 1S% 4 0 19 4%
6-9/10 3 I 7 21 3
10710 2 10 48 80 __ 2

2 20 25 55 100% 9%

C) VISIBILITY (Km)
11 AM

BAMGHT <32 _ 32-8 3-20 >20 > CHANGE

<3.2 km 20% 8 1 I 30% 10
3.2-8 km 8 12 4 1 23 8
8-20 km I 7 14 3 25 1
>20 km ] 1 3 1222 1 _
' [ )
2> 28 28 22 22 100% 1B%
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TABLE 2. 3TRUCTURE MATRIX
STUTTGART, JANUARY 1946-1953, 08 GMT

UNROTATED [ROTATED (DRTHOGONAL)|

u '| .44 .53 -48 49| .13 .18 -93 .16
T .63 49 -42 -124 36 .52 -62 -.20
RH .04 -66 -.57 ~.44| .07 -32 .08 -92
CEIL -09 .21 -09 -01(-90 .04 .15 .06

CL AMT 91 -24 .04 .01} .92 -07 -.18 -.10
Ln VI3 .10 .90 .18 -23(-06 .88 -.13 .32
CEIL 3 -8¢ .19 -20 .06)|-92 -03 .04 .01
CLAMT 3| .91 -17 .20 -03]| .94 .02 -08 .01
Ln VIS .14 88 .02 -34|-06 .92 -.19 .14

VAR 3.1 270 .86 .61(3.54 2.04 1.36 1.04

VAR % 42 30 10 7 39 23 15 13

U = 20NAL WINDSPEED, T = TEMPERATURE,
RH = REL. HUMIDITY, CEIL = CEILING HEIGHT,
CL AMT = TOTAL SKY COVER,

Ln VI3 = LOGARITH OF VISIBILITY

THE NUMBER 3 INDICATES THE ELEMENT 3 HOURS LATER.
150

q LR L= PRy Vg ~ WM LA (e L ;
R e
¥ y h - Vo o) : 2 ., & o . P ot NS




CEIL gh

999
100-300
s 100

s 90

999
100-300
s 100

$ 80

999
100-300
<100
< 950

(CEILING IN 100 ft.)

TADLE 3. MEAN FACTORS BY GROUPS

CEIL 11b

100-300
100-300
100-300
100-300

<100
<100
<100
<100

CEILING HEIGHT

Fi

-8.22
-4.26
-2.17
-2.40

-3.34
39
.95

1.42

-3.36
1.24
2.10
2.10

¥ty aly 0Ty 0% alp e Vo 0Ty ahy bl V0 Ta 0, 0% 0 e Te a0 80, bl le Ve

Fa

.79
-1.34
53
31

.80
.66
-.17
91

.50
.71
-31
=55
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F3

-.13
-1.44
-.90
-.42

.29
21
-.34
-.74

.24
.61
.06
-.05

Fq

-.16

.9¢
-.48
-.44

-.04
.81
.39
.40

-.33
.30
.06
.02

30

= Bt = - OO =

125
115
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TABLE 4. GROUP SELECTION USING MEAN FACTORS

A) CEILING HEIGHT (IN 100 FT))

CEIL | CL. AMT| CHARACT| CEIL | PREDICTED
gh gh oBs 1P| vy vy
999 0 REMAIN 999 |949.6 987.9
990 1-6 CHANGE <300 |525.8 576.7
100-300 <8 REMAIN <300 |202.2 155.4
100-300 4 CHANGE 999 |607.8 609.6
<100 10 REMAIN <100 53.1 37.0
<100 4 CHANGE 999 1424.2 506.1

B) CLOUD AMOUNT (IN TENTH SKY COVER)

CL. AMT| CEIL | CHARACT| CL. AMT| PREDICTED
gh gh B3 11N v, vy
10 <30 REMAIN 10 9.6 9.8
10 30-100 CHANGE 6-9 9.2 9.2
10 >100 CHANGE 0-5 8.7 9.5
6-9 1§50 REMAIN 6-10 8.6 8.7
6-9 >60 CHANGE 0-5 6.4 6.0
4-b 999 CHANBE 6-10 4.6 6.0
0-3 999 REMAIN 0-5 1.9 1.7

Y| = ONE FACTOR, Y4 = FOUR FACTORS
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TABLE 5. RESIDUAL VARIANCE {IN %) FOR THREE PRFEDICTION
MODELS

A) 200 DATA SAMPLE

PERS | Fy F4 |REGR |RATIO(REBR/F )
CEIL 55.6 |22.6 16.5| 43.0% 1.90
CEIL2| 547 (233 16.2| 41.5 1.78
VIS 50.4 |238 20.5| 69.0 2.90
CLAMT| 389 [163 11.4] 37.9 2.32

B) 50 DATA S3AMPLE (IDEAL}

CEIL 120.9 | 36.1 3.2| 62.7% 1.74
VIS 966 | 169 134314 1.86
CLAMTI 89.2 | 34.0 8.1| 67.3 1.98

C) 50 DATA SAMPLE (200 DATA COEFF.)

CEIL 126.0 |39.6 350| 66.7% 2.19
VIS 426 | 15.7 16.1 | 66.0 4.20
CLAMTI 78.9 ,33.5 29.0| 69.9 2.09

PERS = PERSISTENCE, F{ = USING ONE, F4 = USING FOUR
FACTORS, REGR = REGRE3310N MODEL.
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CONSISTENCY OF THE P-VALUE AND A SET OF Q-VALUES
IN A SCORING ACCURACY ANALYSIS

Paul H. Thrasher
U.S. Army Materiel Test and Evaluation/Engineering and Analysis RAM Division R
U.S. Army White Sands Missile Range : L
White Sands Missile Range, New Mexico 88002-5176 M

ABSTRACT o

One particular application, an investigation of bilas in a scoring device, *Q;
111ustrates the use of p-value and q-value analyses. The g-values, the post- )
test estimates of Type II risks, are used to estimate a bias, This astimation o,

1s shown to be meaningful by the consistency of different analyses, R

INTRODUCT ION X

Hypothesis testing 1s a well established analysis technique. This fairly }¢$
rigid procedure can be outlined in distinct steps: !
(1) State a null hypothesis H and an appropriate alternate hypothe- o

sis H, regarding a parameter o, X
(2) Specity the acceptable Type I risk o of falsely rejecting H,» the
acceptable Type II risk B of falsely failing to reject H, when @ has an ".é
unacceptable parameter ¢,, and the planned sample size np by using the

sampling distribution of an appropriate test statistic.
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(3) Obtain sample data.
(4) Decide and report whether or not to reject H .

In the traditional hypothesis testing technique, the report of this reject
or not-reject decision conveys no information concerning the strength of the
evidence for the decision. There are, however, two methods that can be used
simultaneously to describe the evidence for rejection or non-rejection of H..

One method of 1indicating the strength of the decision is to calculate and
report the p-value.® The p-value 1s the smallest value of « that would have
allowed the sample data to cause H, to be rejected. A very low p-value
strongly implies rejection of H,.

A second method of indicating the strength of the decision is to calcu'tate
andlreport a g-value for ¢,.' The g-value is the output of the algorithm that
was used to find B when the algorithm inputs o and np are replaced by the p-
value and the data sample size, A very high q-value strongly implies
rejection of H, 1n favor of H, characterized by o,.

It {s possible to combine the p-value and a g-value in a single measure of
evidence for rejection of H . One combined measure is the ratio of a g-value
to the p-value." A more informative combined measure 1is the ratio
(q=-value/8)/(p-value/a) or (q=-value/p-value)/(8/a).?

For analyses in which a, 8, and especially ¢, are not firmly established,
the most flexible and meaningful approach is to consider the post-test Type I
and Type II risks separately. Since there is a q-value for every 4,, the
analyst should report the p-value and a set of g-values corresponding to a set
of eu’s of possible interest. When these two methods are used simultaneously,

a decision can be based on a comprehensive view of the evidence,
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APPLICATION

The data for the application discussed in this paper is presented in
Table 1. These data are estimates of Cartesian coordinates for points in a
vertical plane, The abscissa is horizontal and the ordinate is vertical, Esti-
& mates are reported from both a scoring device and a standard. The scoring
device is expected to have different horizontal and vertical characteristics
. because of physical effects. The standard is more than an order of magnitude

_{, more accurate than that which is expected of the scoring device. The two

] . S T -, g
e b T

-

) partial scores of the scoring device are not independent. Each 1s obtained

t
¢
U

A
4
(3

£ from two intermediate results and one intermediate result is shared by the two :}
ﬁé partial scores., The final result of the scoring device is normalIy obtained ég
E,:‘: by averaging the two partial scores, Thh is not done here because ;:%
& (1) the drop-outs of the 25 points do not cc¢in~ije so averaging would 'Q
i further decrease the sample size, and

§ ' (2) comparison of the results from the two partial scores can tenta-

E:E tively provide a check for consistency.

Iﬁ The primary approach used in this application is to do a p-value and g-

_E;.:' value analysis on the parameters describing scaling and fixed biases. Linear

3 regression 1s used to find least-squares 2stimates of A and B in y = Ax + B

o where y 1is the scoring device data and x {s the standard data. Separate

:§ calculations are done on both

é (1) horizontal and vertical data and

g‘ (2) partial scores.

? The parameter A should be un1ty‘1f there is no scaling bias, and B should be

5; zero if there is no fixed bias.
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Table 2 contains results of a least~squares fit of a straight line to the
data. The coefficients of correlation are sufficiently low to suggest that
the fit 1s inadequate to specify A and B without reservations. Further indi-
cations of reservations are obtained by considering the ranges that are over-
lapped by the estimates of A and B plus and minus the corresponding standard
deviations. A1l four slopes are close to one, but the slopes for vertical
daty have high standard deviations which overlap not only one but values quite
different from one. The intercepts for horizontal data are close to zero, and
the standard deviations overlap zero. The intercepts for vertical data are
above zero and their standard deviations, even though they are large, do not
overlap zero. The standard deviations of the means, obtained by dividing the
square roots of the sample sizes into the standard deviations of data from the
1ine, are all near or less than 0.4 meter. This implies that the random error
of the scoring device is near or less than 0.4 meter.

Table 3 contains the results of one-sided, Student's-t hypothesis tests on

B. A1l null hypotheses assume no tixed bias. The direction of each alternate

hypothesis was obtained from the sign of the data average. For horjzontal :ﬁE
data from hoth partial scores, the p-values are sufficient’y high and the q- fﬁ%
values, for possible biases further from zero thin 0.2 meter, are sufficiently _iéﬁ
low to suggest that there is no fixed bias. For vertical data, rejection for é&:
p-values less than 0.10 and q-values greater than 0.30 suggests that there may .iﬁ%
be a fixed bias of 0.6 meter to 1.2 meter, This agrees with the point esti- ﬁaﬁ
mates tentatively suggested in Table 2. gl
Table 4 contains the results of one-sided, Student's-t hypothesis tests on agg
A. A1l null hypotheses assume no scaling bias. For both horizontal and ; ng
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vertical data, the p-values are sufficiently high and q-values, corresponding

to possible biases in the range of 0.8 1/m to 1.2 1/m, are sufficiently low to

suggest that there 1s no scaling bias.
? An alternate approach used in this application is to investigate the bias
| by doing a p-value and g-value analysis on A where A is the difference between
the scoring device and standard estimates of point location. These differ-
t ences are obtained by subtraction of data from Table 1.
: Table 5 contains the result of one-sided, Student's-t hypothesis tests on
A, A mean of zero would indicata no bias. For ‘horizontal data from both
partial scores, the p-values are sufficiently high and the g-values, corre-
sponding to possible biases further from zero than 0.2 meter, are sufficiently
Tow to suggest that there 15 no bias, For vertical data, rejection for p-
values less than 0.10 and g-values greater than 0,30 suggests that there may
be a bias of 0.6 meter to 1.2 meter. This is in agreement with the point
estimates tentatively suggested in Table 2 and with the p-value and g-value

analysis of Table 3.

CONSISTENCY

This example 11lustrates the consistency of p-value and g-value analy-
ses. There certainly are issues that need investigation before the general
technique 1is Jjudged to be universally applicable and reliable. One issue is
the effect of using critical levels of significance other than 0.10 and 0.30
for the post-test Type I and Type Il errors., A more serious issue 1s the need

for a comprehensive study on the properties of the g-value. This study should
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include both theoretical and simulation investigations. It should consider E? x
such factors as different underlying distributions and sensitivity to extra- %I”

neous data, In the absence of such a study, however, this paper provides an

example of consistency in the p-value and q-value analysis technique. H i
Table 6 repeats information from Tables 3 and 5 in a format to allow easy }?f‘
W .f
b comparison between the two hypothesis tests on fixed bias B and total bias &n

“ A, Based on the retention of the null hypothesis that there 1s no scaling
bias, these two tests should give the same results. i*.q‘
’ When a decision needs to be made, the g-values are in close agreement for

the two hypothesis tests. For vertical data, the p-values and g-values differ

. only slightly for the two tests for bias. 54‘
.15 For horizontal data, the agreement {is not as good. In this case, however, ??

g rejection 1s not warranted, Thig is indicated by sufficiently high p-values 'fﬁ

¢ and the sufficiently low q-values for biases bigger than the estimated i@"

_% 0.4 meter random error of the scoring device. Thus, for horizontal measure- &;' "
% ments, q-values are not needed to estimate the size of the bias. %?ii'

The results of the two p-value and q-value analyses are consistant where Y
N consistancy is needed. Thus, this example supports the hypothesis that the “f_'

p-value and g-value analysis is meaningful.

T s
S
2

CONCLUS TON o

This application 11lustrates the value of the p-value and q-value analy- "

R AR

‘o sis. This type of analysis should be done to consider and report the best ol

post-test estimates of both Type 1 and Type II risks. Analysts should providae

managers with this {nformation so managers can make informed decisions. o,
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TABLE 1.--Data for scoring device calibration

- s i

i Point Data from Standard Data from Scoring Device
Identification {meters) (meters)

Partial Score One Partial Score Two

Group Point Horizontal Vertical Hor{zonta1 Vertical Horizontal Vertical

1 1 1.0 1.0 1.0 1.2 1.8 1.8

2 1 0.8 0.0 1.8 -2.8 1.5 0.7
2 1.1 -1.8 1.4 -0.4 0.7 -1.4
3 0.0 -1.,2 - - -0.1 -0.9
4 1.6 ~0.4 1.3 -0.7 1.1 -1.4
5 0.3 1.0 -0.2 2.3 -0.3 0.9
6 1.8 0.6 - - 1.4 1,2
7 1.0 0.4 2.3 5.0 1.0 0.5
8 0.7 0.4 0.6 0.9 0.7 0.3

3 1 1.0 2.1 1.2 2.6 1.1 4.3
2 0.5 -0.3 -0.5 4.2 0.1 1.2
3 -0.5 0.4 -0.8 1.6 -0.4 0.5
4 -0.2 0.5 0.0 0.6 -0.2 0.9
5 ~0.3 0.7 -0.2 1.4 - -
6 0.2 0.7 0.1 1.0 - -
7 -0.3 0.7 0.2 1.9 -0.1 0.7
8 0.2 -0.5 0.1 0.5 0.0 0.7

4 1 1.0 0.9 0.0 2.8 0.8 1.1
2 0.7 -0.4 0.3 2.2 - -
3 -0.4 -0.3 -0.3 -1.6 -0.3 0.7
4 0.0 -0.6 0.1 -0.3 -0.3 -1.7
5 -0.2 -0.1 -1.4 5.6 -0.2 0.1
6 0.7 =0.5 0.4 -0.5 0.1 4.0
7 0.6 0.6 -2.0 2.6 0.6 2.7
8 1.4 -0.2 1.3 -2.3 1.1 -0.8
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TABLE 2.--Summary of linear regression BeTe
(Least squares fit of y = Ax + B for y = scoring device & x = standard data)

Measurement: Horizontal Hor{zontal Vertical Vertical Yoy
Partial Score: One Two One Two LA

Sample Size: 23 22 23 22 X v
Correlation: 0.63 0.86 0.37 0.63 Gy

A (1/m): 1.039 0.927 0.996 1.149 . 4N
B (m): -0.201 -0.038 1,022 0.591

55 (1/m): 0.279 0.123 0.552 0.320 e
sg (m): 0.212 0.101 0.437 0.265 B

Sy-1ine (M: 0.795 0.360 2,036 1,231 i
Smean y-11ne (M): 0.166 0.077 0.425 0.263 A
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TABLE 3.--Summary of Student's-t hypothesis tests on B
(B = Intercept fromy = Ax + B = fixed bfas)
Measurement: Hor{zontal Hor1izontal Vertical Vertical
Partial Score: One Two One Two
Nuli: Hot Mean » 0 H,: Mean = 0  H,: Mean = 0 H, : Mean = 0
Alternate: H,t Mean < 0  H.: Mean < 0  H;: Mean > 0 H;: Mean > 0
Sample Size: 23 22 23 22
Average (m): -0.201 ~0.038 1.022 0.591
Std Daviation
of Mean (m): 0.212 0.101 0.437 0.265
P-Value: 0.177 0.356 0.015 0.019
e
Ry
Q-value for 3;2»
Biag = 0.2 m: 0.036 0.015 0.96 0.92 :':;.‘!:';
Blas = 0.4 m: 0.005 0.0002 0.92 0.76 2
Blas = 0.8 m: 0.0001  Close to 0 0.69 0.22 il
Blas = 1.2 m: Close to 0 Close to 0 0.34 0.016 et
Bias = 1.6 m: Close to 0 Close to 0 0.10 0.0006 ot
Bias = 2.0 m: Close to 0 Close to 0 0.02 <0.00001 o
i';“h'
Blas signs: - - + + ﬁéﬁ
l?:l‘;
.
"0,)".
‘:"“'.
e'.',:’
o
|-M.°
S
®
t,',\:‘.’t';:
i
W
b
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TABLE 4,--Summary of Student's-t hypothesis tests on A
(A= slope fromy = Ax + B = scaled bias)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
Null: Hyt Mean = 1 H : Mean = 1  H : Mean = 1 H : Mean = 1
Alternate: H‘: Mean > 1 H;’ Mean < 1 H,: Mean < 1 H,: Mean > 1
Sample size: 23 22 23 22
Average (1/m): 1.039 0.927 0.996 1.149
Std Deviation
of Mean (1/m): 0.279 0.123 0.552 0.320
P=Value: 0.445 0.107 0.497 0.324
Q=vValue for

Slope = Ry 1/m:  0.48 0.57 0.47 0.62

Slope = §4 1/m:  0.42 0.41 0.43 0.56

Slope = Ty 1/m: 0,23 0.16 0.36 0.38

Slope = Uy 1/m: 0,057 0.04 0.30 0.i4

Slope = V4 1/m:  0.0094 0.008 0.24 0.038

Slope = Wy 1/m:  0.0012 0.001 0.19 0.0076
Slope subscript: 1 2 2 1l

R: S: T: U: v We

-Considered biases for subscript 1: 1,05 1,10 1.25 1.50 1.55 2.00
Considered biases for subscript 2: 0.95 0.90 0.80 0.70 0.60 0.50
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TABLE 5.~--Summary of Student's-t hypothesis tests on &
(a= scoring device data - standard data = total bias)

, Measurement: Horizontal Horizontal Yertical Vertical
g Partial Score: One Two One Two
Null: Hy! Mean = 0 H,: Mean = 0 H,: Mean = O H . Mean = 0
! Alternate: H Mean < O  H,: Mean < O  H,: Mean > 0 H: Mean > 0
P
W Sample Size: 23 22 23 22
Average (m): -0,183 -0.077 1,022 0.609
Std Deviation
of Mean (m): 0.777 0.354 1.989 1.208
) P=Value: 0.136 0.159 0.011 0.014

Q-Value for

. Blas » 0.2 m: 0.46 0.06 0.97 0.94
Eg Blas = 0.4 m:  0.097 <0.00001 0.93 0.79
f@; Bias =~ 0.8 m: 0.0048 Close to 0 0.70 0.23
‘ Bias = 1.2 m:  <0.00001 Close to 0 0.34 0.016
2 Bias = 1.6 m! Close to O Close to 0 0.089 0.0005
Y Bias = 2,0 m:  Close to 0 Close to 0 0.014 <0,00001
;Ej Bias signs: - - + + o
5 3
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TABLE 6.-~Consistency of P-values and Q-values
(Comparison of results from hypothesis tests on B and &)

Measurement: Horizontal Horizontal Vertical Vertical
Partial Score: One Two One Two
P-vValue for B: 0.177 0.355 0.015 0.019
P~value for a: 0.136 0.159 0.011 0.014

Q-value for

Bias = 0.2 m

for B: 0.036 . 0.015 0.96 0.92
for A: 0.46 0.06 0.97 0.94
Bias = 0.4 m

for B: 0.005 0.0002 0.92 0.76
for A: 0.097 <0,00001 0.93 0.79
Bias = 0.8 m

for B: 0.0001 Close to 0 0.69 0.22
for A: 0.0048 Close to O 0.70 0.23
Bias = 1.2 m

for B: Close t0 0 Close to O 0.34 0.016
for A <0,00001 Close to O 0.34 0.016
Bias = 1.6 m

for B: Close to O Close to 0 0.10 0.0006
for A Close to O Cluse to O 0.089 0.0005
Bias = 2.0 m

for B: Close to O Close to 0 0.02 <0.00001
for A: Close to 0 Close to 0 0.014 <0.00001
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DENSITY ESTIMATION, MODELING AND
SIMULATION: STUDIES IN EMPIRICAL MODEL
BUILDING*
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James R. Thompeon Empirical Model Bullding Preface

PREFACE

The study of mathematical models is clcsely connected to notlons of
scientific creativity. As of the present, there i2 no axiomatic or even well defined
discipline which is dircctly concerned with creativity., Even though we cannot
display a progression of exercises which have as their direct objective the building
of creativity, we can attempt to accomplish this goal indirectly. A mastery of a
portion of Euclid's treatises on geometry does not directly appear to bulld up a
potential statesman's abllity to practise statecraft. Yet many effective statesmen
have claimed that their studies of Euclid's geometry had achieved this effect.
More directly, it is clear that the study of physies would be likely to be helpful in
developing the ability to design good automobiles. It Is this carryover effect from
one well defined discipline to another less defined one which has traditionally

been the background of science and engineering education.

Valuable though an indirect approach to the gaining of creatlvity in a par-
ticular ares may be, it carries with it certain dangers. We are rather In the
same situation as the little boy who searched for his quarter, lost in a dark alley,
under a bright streetlight on & main street. There is no doubt that the main-
street searching could be of great utility in the ultimate quest of inding the quar-
ter. Many of the relevant techniques in quarter finding are similar, whether one
is looking in the light or in the dark. Hopefully, the study of technique, albeit
unde.taken in a setting substantially different from that of the real problem, will

be at least marginally useful in solving the real problem,
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However, there is a natural temptation never to leave the comfort of ideal- §§:::ﬁ
ized technique under the bright lights, never to venture into the murky depths of :w
the alley where the real problem lles. How much easier (o stay on mainstreet, to :ii'i

write a treatise on the topology of street lamps, gradually to forget about the lost

quarter altogether.

In its most applied aspect, technique becomes problem solving. For example, o
if the little boy really develops a procedure for finding his particular quarter in
the particular dark alley where he lost it, he will have been engaged in problem
solving. Although it is difficult to say where problem posing ends and problem "‘f'i
solving begins, since in the ideal state there is continuous interaction between the

two, model building is more concerned with the former than with the latter.

Whereas problem solving can generally be approached by more or less well
defined techniques, there Is seldom such order in the problem posing mode. In :jg
the quarter finding example, problem posing would involve determining that It :.::;E
was important that the quarter be found and a description of the relevant factors . ';':_'
concerning this task. Here, the problem posing is heuristic, difficult to put into :::::'.
symbols and trivial. In the real world of science, problem posing Is seldom ;‘.'
trivial, but remains generally heuristic and difficult to put into symbols. For o
example, Newton's Second Principle states that force Is equal to the rate of s
change of momentum or )
Dl
F =t (mo). (0.1) 5
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James R. Thompeon Empiriea) Model Bullding Preface

The solving of (0.1) for a variety of scenarios is something well defined and easily
taught to a high school student. But the thought process by which Newton con-

jectured (0.1) Is far more complex.

We have no philosopher's stone to unlock for us the thought processes of the
creative glants of science. And we shall not use the device of scientific biography
much in this treatise. However, the case study approach appears to be useful In
the development of creativity. By processes which we do not understand, the
mind is able to syuthesize the ability to deal with situations apparently unrelated
to any of the case studies considered. It is the case study approach, historically

motivated on occasion, which we shall emphasize.

At this point, it Is appropriate that some attempt be made to indicate what
the author means by the term Empirical Model Building . To do so, It Is neces-
sary that we give some thought to some of the ways various scientists approach
the concept of models. We shall list here only those three schools which appear
to have the greatest numbers of adherents. The first group we shall term the
Idealists. The ldealists are not really data oriented. They are rather concerned
with theory as a mental process which takes a cavalier attitude toward the ‘‘real
world.” Their attitude can be summed up by, "If facts do not conform to theory,
then so much the worse for facts. For them, the ‘‘model” is all. An example of a
pure Idealist is given by the character of Marat In Weiss' play MaratSade. Marat
says “Against Nature's silence 1 use action. In the vast indifference I invent a
meaning.” Although Idealists do crop up from time to time in the physical and

blological sciences, they have a hard time there. Sooner or later, the theories of &

&
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Lysenko, say, are brought up against the discipline imposed by the real world COLE
and must surrender in the face of conflicting evidencs. But even ip the hard sci- X

ences, there is the pousibility that ‘‘sooner or later’ may mean decades. Once a e
theory has developed a constituency of individuals who have a vested interest in R
its perpetuation, particularly If the theory has no immediate practical implica- e e
tion, there will be a tendency of other scientists, who have no interest in the

theory either way, to let well enough alone.

The second group, that of the Radical Pragmatists (Occamites, nominallsts) R
would appear to be at the opposite end of the spectrum from that of the Ideal- 'sz-?‘fr‘lf
ists. The Radical Pragmatists hold that data is all. Every situation is to be
treated more or less sus generis. There Is no “truth.” All models are false, L
Instead of model building, the Radical Pragmatist curve fits. He does not look on Loy
his fitted curve as something of general applicabliity, rather as an empirical dev- W
ice for coping with a particular situation. The maxim of Willlam of Occam was
‘“Essentia non sunt multiplicanta praeter necessitatem,” roughly, ‘‘The iy
hypotheses ought not to be more than is necessary.” The question here is what J
we mean by ‘“necessary.” All too frequently, it can happen than ‘“necessary" o~
means what we need to muddle through rather than what we need to understand. ey
But few Radical Pragmatists would take the pure position of Weiss's Sade who o

OO
says ‘'No sooner have | discovered something than I begin to doubt it and I have W

to destroy it again...the only truths we can point to are the ever-changing truths My

" Y |'I?
of our own experience. ;
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The Realists (Aristoteleans, Thomists) might appear to some w occupy a
grouud Intermediate to that of the Idealists and that of the Radical Pragmatists.
They hold that the universe is governed by rational and consistent laws. Models,
for the Realist, are approximations to bits and pleces of these laws. To the Real-
ist, ‘“We see through a glass darkly,” but there is reality on the other side of the
glass. The Realist knows his model is not quite right, but he hopes it is incom-
plete rather than false. The collection of data Is useful in testing his model and
enabling him to modify it In appropriate fashion. It Is this truthseeking, interac-

tive procedure between mind and data which we term Empirical Model Buslding .

To return again to Newton's Second Principle, the position of the Idealist
might be simply that the old Newtonlan formula

Femma (0.2)

Is true because of logical argument. But then we have the empirically demonstr-

able discovery of Einstein that mass is not constant but depends on velocity via

Mo
= T (0.3)

2 - B RN

2 )
o i
5 I'..c
 The Idealist would have a problem. He might simply stick with (0.2) or :2:::5

o
experience an iatellectual conversion, saying, *‘Right, Einstein is correct; Newton ,'v;
Wy
Is wrong. 1 am no longer a Newtonian but an Einsteinlan" (or some less self- :::
0.
effacing dlalectical version of the above conversion.) ’ A
o
The reaction of the Radical Pragmatist might be, “You see, even an »‘,:::.::
““:::
apparently well established model llke Newton's Is false. No doubt we will soon .",:::;
o |
o
e
R
178 e

(N W . & 0O At n '
" :”: ::' :‘s ." :' :::'u "- :! "":"": ':’*::"':"':"':'-"'-"'- "c':"':,t.- \" dodln % X “‘" 0 -r.d' nfifdes W\". e
‘ st idard N q‘ o NDW “-D!‘u R o Sud, 1l."I e w-igi ol " ¢ tl‘.._ .l". %’. “..!!




6 .
James R, Thompeon Emplrical Model Bullding Preface

learn that Einstein's is false also. Both these ‘models’ are useful in many applica-

tions, but thelr utility lies solely in their applicabllity In each situation.”

The Realist Is alsc unsurprised that Newton's model falls short of the mark.
He aotes that the discovery of Einsteln wili require a modification of (0.2). He

readily accomplishes this by combining (0.1) and (0.3) to give

@ 42 (0.4)

He views (0.4) as & better approximation to truth than (0.2) and expects to hear

of still better approximations in the future.

The preceeding should give the reader some feel as to what the author
means by empirical model bullding (and also as to his prejudices In favor of the
Realist position). It is the process which is sometimes loosely referred to as the
“sclentific method.” As such, it has been around for millenla~though only for
the last five hundred years or so has quantitative data collecting enabled its
ready use on nontrivial scientific problems. Realists might argue (as I do ) that
empirical model building is a natural activity of the human mind. It is the
interactive procedure by which human beings proceed to understand portions of
the real world by proposing theoretical mechanlisms, testing these against obser-
vation and revising theory when it does not conform to data. In any glven situa-
tion, a scientist's empirical model is simply his current best guess as to the under-

lying mechanism at hand.
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The Radical Pragmatist position has great appeal for many, particularly in 3::'
the United States. There would appear to be many advantages to an orientation .:.3:
which allowed one to change his ground any time it was convenient to do so. o

But the ultimately nihilistic position of Radical Pragmatism has many practical

difficulties. For example, data is generally collected in the light of some model. | b
‘ Moreover, from the standpoint of compression of information, a polnt of view :;{:'
‘ which rejects truth also rejects uniqueness, csuslng' no little chaos In representa- 1
‘ tion. Finally, the old adage that *He who believes in nothing will believe any- ;;{
thing" appears to hold, The Radical Pragmatist seems to join hands with the g:;'
Idealist more often thun either cares to admit. There are certaln groups who ;5‘
) seem to wear the colours of both the Ideallst and Radical Pragmatist schools. E:E{izu
“ The above taxonomyl of contemporary scientists into three falrly well defined :EE
“ schools of thought is, obviously, an oversimplification. Most sclentists will tend 35‘“
: to embody elements of all of the three schools in thelr makeup. For example, 1 ;:'{
might be ( and have been) accosted In my office by someone who wishes me to .‘,.'::;'
& examine his plans for a perpetual motion machine or his discovery of a conspiracy ;::;E'E.E
! of Freemasons to take over the world. As a purely practical matter, because my ::"E:
time is limited, I will be likely to dismiss their theories as patently absurd. In so :'E;:':E

doing, | am apparently taking an Idealist position, for, indeed I know little about :.‘E:,E i'
Freemasonry or about perpetual motion machines. But without such practlcal :::;
use of prejudice, nothing could ever be accomplished. We would spend our lives :EE':
“starting from zero" and continually relnventing the wheel. There Is a vast body :".::
of information which I have not investigated and yet take to be true, without ::E::
'.-E
180 ::’:?
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ever carefully checking it out. This is not really ‘Idealism’; this is coping. But E:EZ:ZE
':':fn‘

if I read in the paper thet Professor Strepticollicus had indeed demonstrated s B
o

working model of a perpetual motion machine, or If 1 heard that a secret meeting W
i

room, covered with Masonle symbols, were discovered in the Capltol, then I a:
should be willing to reopen this portion of my “information bank' for possible bt
modification. ;‘:L
For similar practical reasons, I must act like a Radical Pragmatist more i
often than I might wish. If I see a ten ton truck bearing down on me, I will :?1“::,

instinctively try to get away without carefully Investigating considerations of
momentum and the likely destruction to human tissue as a result of the dissipa-
tion thereof, But I have the hope that the manufacturer of the truck has logleally
and with the best Newtonlan theory in tandem with emplirical evidence designed

the vehicle and not simply thrown components together, hoping to muddle

through.

In sum, most of us, while accepting the practical necessity of frequently
assuming theories which we have not analyzed and using a great deal of instinc-
tive rather than logical tools in our work, would claim to belleve in objective
reality and a system of natural laws which we are in a continulng process of per-
celving. Tius, most of us would consider ourselves to be Rationalists though we

" might, from time to time, act otherwise. Perhaps the minimal Ratlonalist maxim
is that of Orwell's Winston Smith “Freedom Is the freecdom to say that two plus

two make four. If that Is granted, all else follows."
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Section 3. Modular Wargaming

Checkerboard based games are of ancient ortigin, being claimed
by a number of ancient cultures. One characteristic of these
games is the restricted motion of the pieces, due to the shape of
the playing field. This is overcome, in measure, in chess, by
giving pieces varying capabilities for motion both in direction
and distance. Another characteristic of these games is their
essential equality of firepower. A pawn has the same power to

capture a queen as the queen to capture a pawn. Effectiveness of
the various pieces is completely a function of their mobility.

Figure 1

The directional restrictions of square tiles are a serious
detriment to checkboard games if they are to be reasonable
simulations of warfare. The most satisfactory solution, at first
glance, would appear to be to use building blocks based on
circles, since such tiles would appear to allow full 360 degree
mobility. Unfortunately, as we observe below, circles cannot be
satisfactory tiles, since they leave empty spaces between the
tiles.

182
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Figure 2
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A natural first attempt to overcome the difficulty of circles
as tiles would be to use equilateral octagons, since these allow
motion to the eight points of the compass, N,NE,E,SE,S,SW, W, NW.
Unfortunately, as we see below, this still leaves us with the

empty space phenomenon.
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Motion of various units was regulated by their capabiiities in
their particular terrain situation. The old notion of “"turns” was
retained, but at each turn, a player could move a number of units
subject to a restriction on total move credits. Combat could be
instituted by rules based on adjacency of opposing forces. The
result of the combat was regulated by the total firepower of the
units involved on both sides in the particular terrain situation.
A roll of the cice, followed by lookup in a combat table gave the

casuaity figures together with advance and retreat information.
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their ability to simulate the real world situation. Their major
difficulty was one of bookkeeping. Frequently, a simulated
combdat could take longer to play than the actual historical
battle. if the masking of movements and questions of
intelligence gathering were incliuded in the game, a large number
of referees was required.

In attempting to take advantage of the computer, the creators
ef many modern military wargames have attempted to go far
beyond resolution of the bookkeeping problems associated with
Kriegspiel . Very frequently, these games do not allow for any
interaction of human participants at }all.

Initial conditions are loaded into a powerful mainframe
computer, and the machine plays out the game to conclusion
based upon a complex program which may actually look at the
pooled result of simulations of individual soidiers firing at each
other, even though the combat is for very large units. Any real
time corrections for imperfections in the game are, accordingly,
impossible. Any training potential of such games is, obviously,
slight.

Furthermore, the creators of many of these games may disdain
to engage in any validation based on historical combat results.
Such validation as exists may bte limited to checking with
previous generations of the same game to see whether both gave
the same answe-.

if we know anything about artificial intelligence (and
admittedly, we know very little), it would appear to be that
those simulations work best which appear to mimic the
noncomputerized human system.

Attempis to make great leaps forward withoul evoiution from

noncomputerized system are almost always unsuccessful. And it
1o/
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is another characteristic of such a nonevelutionary approach that
it becomes quickly difficult to check the results against
realistic benchmarks. Before anyone realizes it, a new,
expensive, and, very likely, sterile science will have been
created soaking up time and treasure and diverting us from the
real world situation.

My own view is that it is better to use the computer as a
means of alleviating the bookkeeping difficulties associated
with Ariegspiel-like board games. In the late 1970's and early
1980°'s, | assigned this task to various groups of students at
Rice. Experience showed that two hundred person hours of work
generally led to games which could emulate historical results
very well.

At least another five hundred person hours would have been
required to make these games user-friendly, but the rough
versions of the games were instructive enough. One criticism
made against historical validation is that technology s
advancing so rapidly that any such validations are meaningless.it
is claimed that the principal function of wargaming ought to be
predictions of what will happen given the new technologies.
while not agreeing that parallels between historical situations
and future conflicts are irrelevant (and | note here that the
Strateqy and Tactics hobbyists generally make games ranging
from Bronze Age warfare to Starship Troopers), | agree that the
predictive aspect, in the form of scenario analyses, is very
important.

Accordingly, one student created a game for conflict between
an American carrier task force and a Soviet missle cruiser task
force. Given the close-in combat which would be likely, it

appeared that if the Soviet commander is willing to sacrifice his

e
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force for the much more costly American force, he can effect an

exchange of units by a massive launch of missles at the outset of
the conflict. Clearly, such a playout could have serious
technological implications, e.g., the desirability of constructing
a system of jamming and antimissle defenses which is highly
resistant to being overwhelmed by a massive strike. Or, if it is
deemed that such a system could always be penetrated by futher
technological advances on the Soviet side, it might be
appropriate to reconsider task forces based around the aircraft
carrier. In any event, | personally would much prefer an
interactive game in which | could see the step by step results of
the simulation.

Also, a validation using, say, data from the Falkland conflict
could be used to check modular portions of the game. World War
i1 data could be used to check other parts. The validation would
not be as thorough as one might wish, but it would be a goodly
improvement on no validation at all. Some °“supersophisticated”
unvalidated computer simulation in which the computer simply
played with itself and, at the end of the day, told me that
existing antimissle defenses were sufficient would leave me
neither comforted nor confident.

An integral part of any Ariegspielcomputerization should deal
with the resolution of the likely results of a conflict. A ready
means of carrying this out was made available via the famous
Worlid War | opus of Lanchester (1916). Let us suppose that there
are two forces, the Blue and the Red, each homogeneous, and with

sl s5i/zcs uand v respeclively.

Then, if the fire of the Red force is directed, the probability a
particular Red combatant will eliminate some Blue combatant in

time interval [t,t+A] is given simply by:
189
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(2.3.1) P{Blue combatant eliminated in [t,t+Al= c4A,

where c, is the Red coefficient of undirected fire. If we wish,

then, to obtain the total number of Blue combatants eliminated
by the entire Red side in [t,t+A], we will simply multiply by the
number of Red combatants to obtain:

(2.3.2) EIChange in Blue in [t,t+Al ] = -v c A,
Replacing u by its expectation (as we have the right to do in

many cases where the coefficient is truly a constant and vandu

are large), we have:

(2.3.3) au/A = - cyv.

This gives us immediately the differential equation
(2.3.4) du/dt = - cyv.

Similarly, we have for the Red side
(2.3.5) dv/dt = - c,Hu.

This system has the time soluticn
(2.3.6) u(t)~u cosh¥(c coit-v, Y(cy/cy) sinh J(c cHlt

v(t)=vocosh¥(c cydt-uy (co/cy) sinh Y(c et

A more common representation of the solution is obtained by
dividing (2.3.4) by (2.3.5) to obtain

(2.3.7) du/dv =cyv/ Cou,

with the solution
(2.3.8) u2- ug? = ¢ /et v2-vy2).

Now u and v are at “combat parity” with each other when
(2.3.9) U2 = C‘IC2 ( V2)

(A special point needs to be made here. Such parity models
assume that both sides are willing to bear the same proportion

of losses. |If such is ?ot the case, then an otherwise less
20
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mamerous and less effective force can still emerge victorious.
For example, suppose that the Blue force versus Red force
coefficient is .S and the Blue force has only .9 the numerosity of
the Red force. Then if Blue is willing to fight until reduced to .5
of his original strength, but Red will fight only to .8 ol his
original strength, then using (2.38) that by the time Red has
reached maximal acceptable losses, Blue still has 61% of his
forces, and thus wins the conflict. This advantage to one force
to accept higher attrition than his opponent is frequently
overlooked in wargame analysis. The empirical realization of
this fact has not escaped the attention of guerilla leaders from
the Maccabees to the Mujaheddin.)

Accordingly, it is interesting to note that if there is a
doubling of numbers on the Red side, Blue can only maintain

parity by seeing to it that c,/c,; is quadrupled, a seemingly

impossible task.

Lanchester's formula for undirected fire follows from similar

Poissonian arguments. The probability that a Red combatant will

eliminate some Blue combatant in [t,t+A] is given by

(2.3.10) Pla Blue eliminated by a Red in [t,t+A]] =
Pishot fired in [t,t+A]] Plshot hits a Blue] A.

Now, the probability a shot 2imed at an area rather than an
individuil hits someone is proportional to the density of Blue

combatants in the area, hence proportional to u. Thus, we have:

(2.3.11) PIBlue eliminated in [t,t+A]l = du A.

The expected number of Blues eliminated in the interval is

given by multiplying the above by the size of the Red force,
191
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namely, v.
So the differential equations are:

(2.3.12) du/dt = -duv

dv/dt = -dpuv.

This system has the time solution:

(2.3.13)u(t)= (dy/d, ug-vgl/ldy/dy-vo/ugexpi-(dy ug- dy voith
v(t) = (d}/dovg- ugl/{dy/dy - ug/vaexpi-(dy vo- dougltll.

Here, when dividing the equations in (2.3.12) and solving, we

obtain the parity equations:

(23.14) u-ug =dy/dy(v-vg ).

In such a case, a doubling of Red's parity force cah be matched

by Blue's doubling of d,/d,.

In attempting to match either law (or some other) against
historical data, one needs to be a bit careful. In 1954, Engel
claimed to have validated the 3applicability of Lanchester's
directed fire law for the Battle of Iwo Jima. He used no records
for Japanese casualties and simply juggled the two parameters
to fit the record of American casualty data.

In a STAG report written in 1972 (later published in the
open literature in 1979), Thompson, using the partial Japanese
casualty records, showed that the directed fire model gave
answers much at variance with the data (sometimes off the
Japanese total effectives by a factor of four) and that the
undirected fire model appeared to work much more
satisfactorily. However, the bottom line in the Thompson paper

was that a homogeneous force model was probably not very

L S S - R L A B N T R T T R W VA D S - - ., Ml ol - .t
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satisfactory in an engagement in which naval gunfire together
with Marine assault both played important roles. We shall
address the hetereogeneous force model problem directly.

in this, the one hundred and fiftieth anniversary of the Battle
of the Alamo, it is perhaps instructive to consider a situation in
which 2 mixture of the two models is appropriate. Since the
Texians were aiming at a multiplicity of Mexican targets and
us:ng rifles capable of accuracy at long range (300m), it might
be appropriate to use the directed fire model for Mexican
casualties. Since the Mexicans were using less accurate
muskets (100m) and firing against a fortified enemy, it might be
appropriate to use the undirected fire model for Texian

casulaties. This would give

(2.3.15) du/dt = -d,uv

dv/dt = -cHu.
The parity equations are given by
(2.3.16) v2-v? = 2c5/d,( u-ugp).

The Texians fought 188 men, all of whom perished in the
defense. The Mexicans fought 3,000 men of whom 1,500 perished
in the attack. By plugging in initial and final strength

conditions, it is an easy matter to compute co/dy = 17,952
However, such an index is essentially meaningless, since the
equations of combat are dramatically different for the two

sides. A fair measure of man for man Texian versus Mexican

effectiveness is given by
(2.3.17) [ {dv/dt}/u ] /7 [ (du/dt)/v] = cp/(dqu) .

This index computes the rate of destruction of Mexicans per
Texian divided by the rate of destruction of Texian per Mexican.
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We note that the mixed law model gives a varying rate of
effectiveness, depending on the number of Mexicans present. At
the beginning of the conflict, the effectiveness ratio is a
possible 96 ; at the end, a romantic but unrealistic 17,952

The examination of this model in the light of historical data
should cause us to question it. What is wrong? Most of the
Mexican casualties occurred before the walls were breached.
Most of the Texian casualties occurred after the walls were
breached. But arter the walls were breached, (he Mexicans
would be using directed rire against the Texians.

We have no precise data to verify such an assumption, but for
the sake of argument, let us assume that the Texians had 100

men when the wvalls were breached, the Mexicans 1800. Then

(2.3.16) gives c,/dy = 32,727. The combat effectiveness ratio

c,/(dyu) goes then from 174 at the beginning of the siege to 327

at the time the walls were breached. For the balance of the
conflict we must use equations (2.3.4) and (2.3.5) with the

combat effectiveness ratio c,/c; = 99 (computed from (2.3.8).

Personally, | am not uncomfortable with these figures. The
defenses seem to have given the Texians a marginal advantage of
around 3. Those who consider the figures too “John Wayneish®
should remember that the Mexicans had great difficulty in
focusing their forces against the Alamo, whereas the Texians
were essentially all gainfully employed in the business of
fighting. This advantage to a group of determined Palikari to
defend a fortified position against overwhelming numbers of a
besieging enemy is something we shall return to shortly.

Having, hopefully, transmitted some feeling as to the

advantages of common sense utilization of the method of

...................
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Lanchester (borrowed in spirit from Poisson), we shall now take
the next step in its explication: namely the utilization of

heterogeneous force equations. ,
Let us suppose that the Blue side has m subforces

lullj., 2 _m- These might represent, artillery, infantry,
armour, etc. Also, let us suppose that the Red side has n
subforces lv]l 1=1,2,...0 Then the directed fire equations (2.3.4)

and (2.3.5) become:
(2.3.18) mj,dt = - Ii=| to nkijc”jv‘

(2.3.19) dvildt =~ };j" to l'l'lljic2j‘uj'
Here, k; j represents the allocation (a number between 0 and 1
such that }:j=| to mKi j < 1) of the i'th Red subforce's firepower

| against the j'th Blue subforce. c; j represents the Lanchester

attrition coefficient of the i'th Red subforce against the j'th

Blue subforce. Similar obvious definitions hold for “ji] and

(°2ji1~
(2.3.18) furnishes us a useful alternative to the old table
lookup In Ar/egsp/el Numerica! integration enables us to deal
handily and easily with any difficulties associated with turn to
turn changes in allocation and effectiveness, reinforcements,
etc. txperience has shown that computerized utilization of
mobility rules based on hexagonal tiling superimposed on actual
terrain, together with the use of Lanchester hetereogeneous
force combat equations, makes possible the construction of

realistic war games at modest cost.
Beyond the very real utility of the Lanchester combat laws to
describe the combat mode for war games, they can be used as a
195
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mode]! framework to gain insights as to the wisdom or lack

thereof of proposed changes in defense policy. In 1972 | wrote a
STAG report (published in the open literature in 1979) to
address the problems of disparity of NATO and Warsaw Pact
forces. As we have observed in (2.3.9), in the face of a twofold
manpower increase of Red beyond the parity level, Blue can,

assuming Lanchester's directed fire model, maintain parity only

by quadrupling co/C;. This has usually been perceived to imply

that NATO must rely on its superior technology to match the
Soviet threat by keeping c, always much bigger than c,.

Since there exists evidence to suggest that such technological
superiority does not exist at the conventional level, it appears
that the Soviets keep out of Western Europe because of a fear
that a conventional juggernaut across Western Europe would be
met by a tactical nuclear response. Thus, the big push by the
Soviets and their surrogates for “non first use of nuclear
weapons™ treaties. It is not at all unlikely that the Soviets
could take Western Europe in a conventional war.

In my paper "An Argument for Fortified Defense in Western

Europe,” | attempted to show how the c,/c; ratio could be

increased by using fortifications to decrease Cy. whether or not

the reader judges such a strategy to be patently absurd, it is
instructive to go through the argument as a means of explicating
the power of Lanchester’'s 1aws in scenario analysis

My investigation was motivated by the defense of the
Westerplatte peninsula in Dantzig by 188 Polish scldiers from
September 1 through September 7 in 1939, and some interesting
parallels with the much lower tech sige of the Alamo a hundred

years earlier. (Coincidentally, the number of Pclish defenders
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was the same xs the number of Texians at the Aiamo.) The
attacking German forces included a batallion of SS, a batallion
of engineers, a company of marines, a construction bataliion, a
company of coastal troops, assorted police units, 25 Stukas, the
artillery of the Battleship Schleswig-Holstein, eight 150 mm
howitzers, four 210 mm heavy mortars, a hundred machine guns,
and two trainloads of gasoline (the Germans tried to flood the
bunkers with burning gasoline).

The total number of German troops engaged in combat during
the seven day seige was well over 3,000. Anyone who has visited
Westerplatte (as | have) is amazed with the lack of natural
defenses. It looks like a nice place for a walkover. |t was not.

The garrison was defended on the first day by a steel fence
(which the 6ermans and the League of Nations had allowed,
accepting the excuse of the Polish commander, Major Sucharski,
that the fence was necessary to keep the livestock of the
garrison from wandering into Dantzig), which was quickly
obliterated. Mainly, however, the structural defences consisted
in concrete fortifications constructed at the ground level and
below. Theoretically, the structural fortifications did not exist,
since they were prohibited by the League of Nations and the
peninsula was regularly inspected by the Germans to insure
compliance. However, extensive "coal and storage cellars™ were
permitted; and it was such which comprised the fortifications.
The most essential part of the defenses was the contingent of
men there. Unlike the Texians at the Alamo who realized they
were going to die only after reinforcements from Goliad failed
to arrive and the decision was made not to break through Santa
Anna’'s encirclemen!, the Polish defenders of Westerplatte
realized that when the German invasion began, they were

197



Jusss R. Thempuse v Wergsning
doomed. It IS iInteresting to note the keers competition which

existed to gain the supreme honour of a posting to Westerplatte.
Perhaps “no bastard ever won 3 war by dying for his country” but
the defenders of the Alamo and those of Westerplatte
consciously chose their deaths as an acceptable price for
wreaking a bloody vengence on the enemies of their people.

Ever since the abysmal failure of the Maginot Line in 1940, it
has been taken for granted that any strategy based on even the
partial use of fixed defenses is absurd. | question this view.
Historically fixed defenses have proved more effective as
islands rather than as flankable dikes. The Maginot Line was
clearly designed as a dike, as was the Great Wall of China, and
both proved failures. it is unfortunate that the dike-like tactics
of trench warfare had proved so effective in World War |
Otherwise, the French would undoubtedly have noted that they
were basing their 1940 defense on an historically fragile
strategy. Dikes generally can withstand force only from the
front, as the Persians (finally) discovered at Thermopolae. If
the dikes are sufficiently narrow znd thick, however, they many
be effective islands and very difficult to outflank. It was
conceded by the panzer innovator, von Manstein, that Germany
absolutely could not have taken the Sudententand defenses in
1938 had they been used. This brings up another interesting
point. An effective system of fixed defenses is very much
dependent on the will of the people using them.

Historical examples, modern as well as ancient, of successful
use of constructed defensive positions can be given ad
infinitum. Among the crusading orders, the Templars and
Hospitalers early discovered that they could maintain an
effective Christian presence in the Holy Land only by

s
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concentrating a large percentage of their forces in a number of
strongly fortified castles. This gave them sufficient nuisance
value to cause concessions by the Muslim leaders. Most of the
military disasters to the orders were the result of their
frequent willingness to strip their castle defenses and join the
crusader barons in massive land battles against numerically
overwhelming odds--as at Hattin. For over a thousand years,
some of the Christian peoples in the Near East, e.g., the
Armenians and the Maronites maintained their very identity by
mountain fortifications.

It is interesting to note that one of the crusader
fortresses--Malta--never fell to the Muslims and was only taken
(by treachery) by Napoleon in 1798. In the Secenc¢ World War,
the connection between the resistance of Malta and the ultimate
destruction of the Afrika Korps is well remembered. Even light,
hastily constructed defenses, manned by people who do not know
they are supposed to surrender when surrounded, can be
extremely effective in slowing down the enemy advance, as
proved by the 101'st Airborne during the Battle of the Buige.

in the examples above, there seem to be some common points.
First of all, fortified defense gives a ready means of increasing
the ratio of the Lanchester coefficients in favour of the Blue
side. One natural advantage to this type of defense is the fact
that the defender can increase his Lanchester attrition ratio by
a policy of construction over a period of time. This may be a
more fruitful policy than placing all one's hopes on increasing
ones Lanchester ratio by the design of new weapons systems.

Secondly, fortified defense should rely o ::dequate stores of
supplies located within the “fortress perimete:r ~ It shou'd be

assumed by the defenders that they will be completely

...........
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surrounded by the enemy for leng periods of time. (In their
fortress at Magdeburg, the Teutonic Knights always kept ten
year's provisions for men and horses.)

Thirdly, fortified defense is @ tssk best undertaken by well
trained professionals with strong goup loyalty.

Fourthly, fortified defense is most effective when there are
allied armies poised to strike the enemy at some future time
and place. The fortress and the mobile striking force
complement each other in their functions. The function of the
fortress is to punish, harass and divide the enemy and to
maintain a presence in 3 particular area. In general, however,
offensive activities must be left to the mobile forces. The
deployment of enemy forces to take fortified positions will
weaken their ability to withstand mobile offensive operations.

Let us now examine modified versions of (2.3.4) and (2.3.5)
(2.3.20) du/dt = -c;" v
" and

(2.3.21) dv/dt = - ¢, "u.

Here the atirition to Blue coefficient is taken to be variable

c,' = c,'(u,v) and is demonstrated graphically in Figure 5.
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Figure 5 e

l Y
u
In the above, ws assume that c,' never exceeds c;, the e

attrition constant corresponding to roafortified combet. -

Clearly, the functions c,' ond c2' are functions of the manner
in which the fortress has been constructed. It may be desirable e
te degign the fortifications sa that c|' is small, .even at the %
expense of decreasing cz' . Generally, one might assume that f‘j‘
: c," 15 close to the nonfortified ottrition rate of u ageinst v, o

gince the defenders wiil have removed potential cover for the :-:‘::'.
Red side. In fortress defense, the solution in time is likely to
be important, since a primary objective is to maintain a Blue

Nt

presence for as iong as possible. We consider a linear E.:%
2 )

epproximetion to the v-level curves of c,'(u,v) in Figure 6. ::3?:
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Figure 6

Then we would have
(2.3.22) du/at = - glvduv - ¢, " u

where c"(u,v) = g(v)u and c‘" is the Blue coefficient of

internal attrition. (We notice that this analysis has moved us,
quite naturally to an undirected fire model for the defender's
lcsses. Tho mode! thus derived 15 essentially that used earlier
for the Alamo.) We might reasonably expect that the besieging
forces would maintair more or 1ess a constant number of troops
in the vicinity of the redoubt. Henca we would expect

(2.3.23) dv/dt = - c," u-c,"" v +P(uy) = 0,

where P(u,v) is the rate of replacement necessary to maintain
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constant v stremgth aad c,  1s tho Red coefficient of internal ’

attrition. 'We might expect that c2“» c|", since inadvertent % ';', ’
self-inflicted cosualiies ars o weil kncwn preblem for the 9
besteging force. Then

(2.3.24) w(t) = ugexpl-(g{v)v + c‘")tl.
The onemy attrition by time t is given by
(2.3.25) jo'Plu,v)at=

£y tvecy ugli-expl-(glvivee, "Nt (glvivec ).
If the Blue defense can hold out until u =« ug (where O<u<1),
then the time till the end of resistance is given by
(2.3.26) t"= - In(o)/{glvIve €4 ")

We have, then that the total losses to the Red side by the time
the defense falls is given by

(2.3.27) [ ©5" ug(1-%) - €5 “vin(e)V/ {gvIv+ ¢y ")
It is interesting to note that if c," =0, then tho minimizatien

of Red casualtias appears to be consistent with the
minimizetion of t". This might indicote thet an optimum
strategy for Red is to overwhelm the Blue fortifications by
shear weight of numbers. This would not be true if beyond some
value of v, dig{v)v}/dvsO, implying that beyond a certain
strength, eadditional Red forces would actually impeair Red's
ability to inflict casuelties on the Blue side. As a matier of
fact, the history of fortified defense ssems to indicote that
such a “beginiiing of negetive returns” point in the v space does
exist. It is generally the case for the besieging force that

c, >0 and that it is increasing in v. This is perticulorly true

if the besieged forces are abie from time to tiine to conduct
203
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cerefully planned “surprisss” in order (e encouwiags? increcsed 5
, N
i confugsion and trigger happiness on the part of the besiegers. :
: in the hetarogensous force model for fortified defense, we !
have :?

Lt
{2.3.28) dulldt =- 2‘=| to nk”gu(vl) V'Ilj"‘ G‘l'. llj EEE: .
. ne ::;;l ‘
(2.3.29) d"ldt = - Ij=' to M'jchI' Ilj '32‘ V‘ .

Ny

The size of the J'th Blue subforce at time t is given by .:':5'

¢
(2.3.30) llj(t) = uj(O)oxpl-tu‘:' to nt”g”(v,)vpc”" 13 ?:ég:
The total attrition to the ith enemy subforce at time t is given :% '

by it

o

(2.3.31) lot P‘(“,V)dt = 2171 to mlj'02"'"1(°) X }::2

lotaxpl-t( :‘=| to nkug”(v,) vt c”" )] dt’cz‘.‘tv‘ ?%

- sV

= de to m|l'02“ Uj(O)“"ORDI 't:kug|l(v‘) V'", .‘

(1] L 1

{ Ik”g”(vl) Vi + 1:'] )« 02' tv‘ . 'v

,

()

Suppose that the effectiveness (st time t) of the Blue ‘

dafender is measured by &

Ay

(2.3.32) T(%) = Il=| to mﬂjilj(t) . '::

]

3

where the a; are predetermined relative effectiveness b

constents. If we assume that the fortress is lost when the _,;
effectiveness is reduced to some fraction x of its initial value, :;,J

i.., when .

(2.3.33) T(1) ¢ &T(0), R

then we can use (2.3.31), in straightforward fashion, to solve ,1« 3

for the time of capturs. '

The shove model gives some indication of the power of the ‘

simple Lanchester “laws" in analyzing 8 "what i1?" scenario. It .:":
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is, in lorge measure, the lack of “gee-whizziness™ of

Lenchester's madels which renders them such a useful device to

the applied worker. Generally speaking, after a few hours of

seif-instruction, a potential user can bring himself to the level

of sophistication where he cen flowchart his own wargame or
" other form cf scenario analysis.
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Section 4. Predation and Immune Response Systems e

Let us consider Volterra's predater-prey model and some

.
consequences for modeling the human body's anti-cancer immune "! :
response system. For the classical shark-fish model, we follow .i,:%?::
essentially Haberman [1977]. Suppose we have predators, say ':!
sharks, whose numbers are indicated by S, who prey on, say fish, .E:,é.:
whose numbers are indicated by F. In the 1920's, it was brought :;':'::}E -
to the attention of Volterra that there appeared to be a periodic
pattern in the abundance of certain food fish in the Adriatic, and |§:E;E |
that this pattern did not appear to be simply seasonal. Volterra i:gt;;e
attempted to come up with the simplest logical explanation of %ﬂ;
this periodicity. é“s
We might suppose that the probability a typical shark gives EE:&E.
birth to another shark (for reasons of simplicity we treat the “'_-
sharks as though they were single cell creatures) is given by :,?3' ,
(2.4.1) Pribirth in [t,t+At]) = [aF] AL. e
Here the assumption is that the probability of reproduction is '::"':'
proportional to the food supply, i.e, to the size of the fish }.;;g
1 population. ,.:"wi‘
The probability a shark dies in the time interval is considered f’. '
to be a constant kAt. Thus, the expected change in the predator "
population during [t,t+At] is given by 3}'“'
(2.4.2) E[AS] = S[aF-k]At. ﬁ:
As we have in the past, we shall assume that for a sufficiently ‘ 2]
large predator population, we may treat the expectation as il
essentialiy deterministic. This gives us the differential ‘E
equation: Wt
(2.4.3) dS/dt = S[AF-K]. :..','!f;
Similarly the probability tlz\g; a given fish will reproduce in 'n.

! ------------- » - 4‘ \., -
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[t,t+at] minug the probability it will die from natural causes
may be treated like
(2.4.4) Pr("birth” in [t,t+At]) = aat
b : We have assumed that the fish have, essentially, an unlimited
‘ ‘ food supply. The death by predation, on a per fish basis, is

- -

obviously the number of sharks multiplied by their fish eating
rate, ¢, giving the differential equation:

(2.45) dF/dt = F(a-cS).

Now the system of equations given by (2.4.3) and (2.4.5) has no
known simple time domalin solution, although numerical solution

SN R

; is, obviously, trivial. However, let us examine the F versus S
situation by dividing (2.4.5) by (2.4.3). This gives us

(2.4.6) dF/7dS =(F/(nF-k)) {(a-c5)/S].

The solution to (6) is easily seen to be

(2.4.7) F ke MF « £¢C553 with E a constant.

Now, let us use (2.4.3) and (2.4.5) to trace the path of F versus
S. We note, first of all, that F=k/A, gives an unchanging S

PSR Sy

population; S=a/c gives an unchanging F population.

--’-'.

;' £ | dFzdts0 dF /dt<0 :
; dS/dt>0 S/dt>0 %
2 K/ A %
'; dF/dt20 dF /dt<0 St1
‘ dS/dt¢ dS/dt<0 &

S ;

Figure |,
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The consequences of Figure | are that the F versus S plot must
either be a closed repeating curve or a spiral. We can use » .
(2.4.7) to eliminate the possibility of a spiral. Let us examine ey
the level curves of F and S corresponding to the common Z values et 7
in

(2.4.8) FKe N « ge~CS5247 o

In Figure 2, we sketch the shapes of Z versus F and S, i::
respectively, and use these values to trace the F versus 5 curve. %""if
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we note that since each value of Z corresponds to at most four
o
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; points on the F versus 5 curve, a spiral structure is out of the 3

; question, so we obtain the kind of closed curve which was i ;5

; consistent with the rough data presented to Volterra. Using '
: Figure 1 in conjunction with Figure 2, we can sketch the time ;':::
' '. behaviour of the two populations ‘;::: ‘

1 L
; F m : ::E
o

‘ k/n 5

Py

-

| d ..
{

' a/c M

I - . "‘»i

R
i
Figure 3 .,.:;
Here we note periodic behaviour with the fish curve leading the .:g‘:
shark curve by “ninety degrees.” :;:-:'o';‘:.
Let us now turn to an apparently quite different problem, "o!:
that of modeling the body's immune response to cancer. Calling ;r' ,
the number of cancer cells, x, let us postulate the existence of ( o
“antibodies” in the human organism which identify and attempt S}‘*
to destroy cancer cells. Let us cal) the number of these immuno ’
entities, y, and suppose that they are given in x units, i.e, one ?; N
unit of y annihilates and is annihilated by one cancer cell. Then, fr
we can model the two populations via hd .
(2.4.9) dx/dt = A +ax -bxy ": .'
(2.4.10) dy/dt = cx -bxy. :-.f
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. The justification for such a model is as follows. Cancer cells

are produced at a constant rate A which is a function of
environmental factors, inability of the body to make accurate
copies of some of the cells when they divide, etc. a is the
growth rate of the cancer cells. b is the rate at which
antibodies attack and destroy the cancer cells. ¢ IS the rate cf
response of the antibody population to the presence of cancer
cells.

Although we cannot obtain closed form solutions for the
system given by (2.4.9) and (2.4.10), we can sketch a system of
curves which will give us some Veel as to which individuals will
have immune systems which can cope with the oncogenesis
process. From (2.4.10), we notice that y decreases if dy/dt = cx
~bxy<0; i.e., if y>c/b. If the inequality is reversed, then y will
increase. Similarly, from (2.4.9), we note that x decreases if
dx/dt = n +ax -bxy<0; i.e., if y>{(a+ax)/b. Let us examine the
consequences of these facts by looking at Figure 4.

=(an+tax)/(bx) Death "3

Lt
c¢/b °

Figure 4
211 -
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The prognosis here would appear to be very had. The body is not

able to fight back the cancer celis and must be overwhelmed. L
On the other hand, let us examine the more hopeful scenario e

O

in Figure 5 i.
y y=(n+ax)/(bx)

cib
hm '\ll.llb l:.':;.
e,
? ?:::'.
a’b — H’b )
0 " .“I
U
X : ‘{;«: .
I-‘
Y .‘l
Figure 5 i
We note the change if c increases dramatically relative to a. We :%
oat"pat
now have regions where the body will arrive at a stable '3:
equilibrium of cancer cells and antibodies. We should also note "
that in both Figure 4 and Figure 5, the situation of an individual ""\

who starts out with no antibodies backup at the beginning of the
process is bad.

We can glean other insights from the model. For example, a
large enough value of A can overwhelm any value of ¢. Thus no
organism can reasonably expect to have the immune response

powel 10 overcome ail oncogénic’ Shbcks, no rhatiel now ;g
Next, even if x Is very large, provided only that we can change
the biological situation tqZ " increase dramatically c, while

)
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suppressing A, the tumor can be defeated.

The model considered here is obviously not only hugely
stmplified, but purely speculative. We have, at present, no good
means of measuring x and y. But it should be remembered that
the model generally precedes the collection of data: generally,
data is collected in the light of a model. In the case of
Volterra's fish model, partial data was available because the
selling of fish was measured for economic reasons. Volterra
was, in short, fortunate that he could proceed from a well
developed data set to an explanatory model. This was
serendipitous, and unusuatl.

Generally speaking, we waste much if we insist on dealing
only with existing data sets and refuse to conjecture on the
basis of what may be only anecdotal information. If we are being
sufficiently bold, then for every conjecture that subsequently
becomes substantiated we should expect to be wrong a dozen
times. Model building is not so much the safe and cozy
codification of what we are confident about as it is a means of
orderly speculation.

References
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' Sectton 5. Pyramid Clubs for Fun and Profit ;.
There are those who hold that the very formalism of the ;
] “free market® will produce good--irrespective of the production ::::E
. of any product or service other thian the right to participate in , _
% the “enterprise” itseif. One ~xample of such an enterprise is 4
: gambling. Here, the player may understand that he ts engaging in :Qé
an activity in which his long run expectations for success are
‘ dim---the odds are against him. Nevertheless, he will enter the :éi:
; enterprise for fun, excitement and the chance that, if he only :;:':.;? "7
plays the game a small number of times, he will get lucky and 3
¥ beat the odds. ‘:‘E::':
Y
y Another example of an enterprise which apparently l::;'::‘
b Lroduces no good or service is that of the pyramid club. Unlike ::ﬁ, )
gambling, the pyramid club gives the participant the notion that ' '.i
they almost certainly wiil “win,” i.e., their gain will exceed, by ':? \
‘ a very significant margin, the cost of their participation. Let "“
us consider a typical club structure. For the cost of $2,000, the ‘ )
| member is allowed to recruit up to six new members. For each -'::,
member he recrvils, he receives a commission of $1,000. é
‘ Furthermore, each of the new members is inducted with the %"
,' same conditions as those of the member who inducted them. Now Rl
: for each recruit made by second level members, the first level _.
member receives a commission of $100. This member is allowed ?'.Ej -
to share in these $100 commissions down through the sixth E::.'::' :
level. Generzlly, there is some time limit as to how long the )
member has to recruit his second level members--typically a '1
year. Thus, his anticipated return is ,EE
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(2.5.1) Anticipated Return = 1,000X 6
L +[62+63+64+6°1X100 = 938,400

It is this apparent certainty of gain which attracts many

‘ “ to pyramid enterprises. Many state governments claim that this

| hope of gain is hugely unrealistic, and thus that pyramid
enterprises constitute fraud. We wish to examine this claim.

Let us suppose we consider olily those members of society
who would become members if asked. Let us say that at any
given time those who are already members will be included in
the pool "y™ and those who have not yet joined but would if asked
are included in the pool “x". if we examine the probability that
a member will effect a recruitment in time intervai a, this
appears to be given by

(2.5.2) P(recruitment in [t,t+A] = k x/{x+y)A
where k = yearly rate of recruitment if all persons in
the pool were nonmembers (e.g., k= 6).
Then we have that the expected numbers of recruits by aill
members in (t,t+A) is given by:
(2.5.3) Einumber of recruits in [t,t+All = ky x/(x+y)A.
N Now there will be an exodus from the pool given by the rate 3
| which is the reciprocal of the average time a member is a
member (say | year). (You should check by an infinitessimal
argument that this statement is true.)
Thus, if we replace the expactation of y by y itself, and
divide by A, and let A go to O, we have
(2.5.4) ay/dt =kyx/(xsy) - ¥y.
Let us make the optimistic {(from the standpoint of the
participants) assumption that2 ])g*y is constant. And, further, let

« . . ~ W N A N R M I R AR A - 10 ‘- il AR ;miu\{\:ﬂ.‘-;‘.""‘ ::}.\%E%ﬂwh\ A ¥§:‘ ‘
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us consider that x and y are proportions so that y=i-x. Then we
R have the easily zelvabie {using partial fractions) equation

(2.5.3) dy/ly(k-8-ky)] = at.

:

:: So we have

:.;;, (2.5.6) t=17(k-y)Inly/(k-8-ky))- 1/(k-yqo)Inlyq/(K-8-kyg)).

% Now, when dy/dt=0, there is no further increase of y. Thus, the
di*! equilibrium (and maximum) value of y is given by

;:;E‘ (2.5.7) yo =(k-8)/K.

% For the present example, where k is 6 and ¥=1, the maximum
. . value of y is .83. y, will only be reached at t= «. But it is
f:% relevant to ask how long 1t will take before y equals, say .82. If
;;;! we assume that y, equals .001, a little computation shows that
il t(y(.82)) = 1.87 years.

3;3': Now, the rate of recruitment per member per year at any
?’5. given tine s given by

(2.5.8) [dys6tlry = [k-8-ky).

ki At time t=1.87, and thereafter,

\ (2.5.9) [dy/dt)/y =.08.

; Unfortunately, a member who joins at t=1.87 or thereafter must
, replace the “6° in (1) by a number no greater than .08. Thus, the
5 anticipated return to a member entering at this time is rather
g}:; less than 938,400:

3 (2.5.10) Antictpated Return <1,000X.08+

2 [.082+.083+.084+ 085X 100~  $80.70.

].., The difference between a pyramid structure and a bona fide

;':' franchising enterprise is clear. In franchising enterprises in ’

-(

S

—su «-A

.‘l‘&'('v\

E

S LSy
e w‘*“atﬁ'\-?

"4“-(' n

PR AR »‘:&:a«-wvwws»x»%
*»ﬁ:ﬁ* R R R R



NeYs
Jemes R. Theinpoes: 109 Pyresid Ciude 2 .

which a reasonable good or service (s being distributed, there is "
a rational expectation of gain to members even if they seli ne %:g‘.?
franchises. Potential members may buy into the enterprise - : |
purely on the basis of this expectation. Still, it is clear that a ::..: '
diftterent kind of saturation effect is imrortant. The owner of 2 X
fast food restaurant may find that he has opened ih an area ';::-"'-;
which already has more such estztlishments than the pool of ;4 )
patenttal customers. But a careful marketing analysis will be G:""ff'?"
enormously heipful in avoiding this kind of snafu. The primary SO
saturation effect is not caused by a lack of potenttal purchasers ,;;f_ '
of fast food restaurants but by an absence of customers. On the ?‘E’:ﬁ'
other hand, there is 1little doubt that many franchising ':‘351
operations infuse in potential members the {dea that their main
profit will be realtzed by selling distributorships. indeed, many '3::":5: k
such operations are de faclopyramid operations. Thus, it would 3!%"
appear to be impossible for the government to come up with a ':,‘:-‘; -'.
nonstiffling definition of pyramid clubs which couid not be ,;:E!j .
circumvented by simply providing, in addition to the recruiting ":,
license, some modest good or service (numbered “collectors’ "%‘: .
item" bronze paper welights should work nicely). The old maxim ‘.:‘.;
of caveat emptorwould appear to he the best protection for the o
public. r' ’
The model of a pyramid club is an example of epidemic ':E: .
structure, although no transmission of germs s involved. Nor ":“ ‘
should the term ‘“epidemic” be considered always (0 have o
negative connotations. It simply has to do with the abiiity of \:g
one population te recruit, willtully or otherwise, members of 'rb*
another populatinn into its ranks. W
" 217 N

Wt

g
O

e 0 A A S S S S e S S B S D i SN S




110 .

Juses R. Thompaen Medo! of ANS X
Section 6. A Model Based Examination of AIDS: Its Causes and ."'
Likely Progression ﬁig‘,,
.:_
A customary approach to the control of contagious diseases ,2;!:!;
in contemporary America is via medical intarvention, either by :{
preveniive vaccination or by the use of antibiotics. Historically, " ]
. seciological control of #ridemics has been the more customary -E.%EE::
method. This has been due, in part, to the fact tnat vaccines E;E:“{
were unknown before the Nineteenth Century and antibiotics T-}?
before the Twentieth Century. :‘:.;;‘.. |
In the case of some ancient pecples, a large portion of the 2%':':‘-:‘: .
system of laws dealt with the means of sociological control of ’f;"fg
epidemics. For example, it should be noted that the 13th, 14th ﬁ;:ii
and half of the 15th chapter of Leviticus (131 verses) are 2
dedicated for the sociological control of leprosy. We might Sf@
contrast this with the fact that the often mentioned dietary g
(koshed) 1aws receive only one chapter, the 11th, wiih a total of ;!:':3':1
47 verses. . i
The motion that epidemics can always be controlied by a shot q
or a pill rather than by the generally more painfui sociological %—K
methods caused much human suffering even before AIDS. For ? 1
example, First World medicine has largely displaced isolation as ,"5..;'«
5 a control for leprosy in the Third World. Because the methods i::;_
* have been less effective in practice than hoped, we have the :
’ gspectacle in some countries of thre¢ generations of a family : .;:.3-:
sharing the same roof and the disease of leprosy. Only in the ;: ":
1980's have we (apparently) reached the level of medical control )
" necessary to protect individuals against the effects of iepresy.
' But, in some sense, we have acted tor half a century as though E}N 5
we were in possession of an agté%eprosy technoiogy which we b‘oﬁ '"

\

:\.\ 4| ’\n
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did not, in actuality, have.

in the case of AIDS, we see an even more difficult (of
medical control) disease than leprosy. At present, the amount
of federal funds expended on AIDS is over 15% of the total
federal funding for research on 3all oncological diseases (of
which AIDS is coneliZered to de one). My cwn discussion with
colleagues involved in the investigation indicates that a vaccine

&¥n

or 8 cure is extremely unlikely in the near future. Accordingly,
we are confronted with a disease wilth & 0GR fatality record
and a per patient medical cost (using the present heruic
intervention) in the $100,000/case range. We must ask the
question of whether the present main thrust of attack can be
deemed optimal or even intelligent.

Below, | will give some of the arguments used in a paper

.....

3 written in 1983, when the extent of the disease was much less o
than is the case presently. First of all, we can determine the :EE:‘;:-':
e probabiltty that a random infective will transmit the disease to E;EEEES
: a susceptible during a time interval [t,t+At). 'f-:
v O I
b
" ¢
/ s'
Prob{transmission in (t,t+At)) = 0
"
\( -', 4
@
g
N where R
B k = # contacts/time | R,
d = prob of contact causing AIDS
: X = B susceptibles .':5§:
= # ] i o
.; Y = # infectives s
o
' 219 2.
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To get the expected total increase in the infective population
during [t,t+at], we multiply the above by Y, the number of
infectives.

(2.6.1)  AE(Y) = YPr(transmission in [t,t+At]).

For large populations, we can assume, under fairly general
conditions, that the expected total change in Y iS a very nearly
equal to a deterministicy, i.e.,

(2.6.2) AE(Y) = AY.
Letting At go to zero, this yields, immediately
(2.6.3)

_di = kaXY

dt X+Y

dX RY
— = —-kqg —
dt X+Y

Now, we must aliow for immigration into the susceptible
population (n), and emigration () from both the susceptible and
infective populations and for marginal increase in the
emigration from the infective population due to AIDS (3), from
gsickness and death. Thus we have the improved differential
equation model

220
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(2.6.4) .’.:'

dY XY i

= ka T = (B+p)Y
dt X+Y oy

dx XY i

— = —ka +7\_UX j'.
dt X+Y - 3
where » = immiarationn i
U= emigration o
5 = aids death rate b
e
For early stages of the disease, X/(X+Y)=i. Accordingly, we may .3':5;!.':
write the approximation: EE::.EEE
(2.6.5) dv/dt =[kec-p-BlY. | ol
This gives us the solution: ' :E;;é::
(2.6.6) Y= Y(0)exp([kot-p-8]t). ':i?.
Now, we shall use some rough guesses for some of the . il
parameters in the equations above. '”
We shall assume that, absent AIDS, the total target pepulatien ”,';s:'a:.
is 3,000,000. We shall assume that an individual stays in this o
population an average of 15 years (yielding ",:‘;'{ _
p=1/7(15X12)=00556). We will use as the average time an .:};
infective remains sexually active 10 months (yielding 8=.1). To rv;
maintain the population of 3,000,000 (absent AIDS), then, we i‘ﬁi
require ,::.(4
(2.6.7) dX/dt= A-pX= 0 w )
or A=16,666. Now, if we comhine these figures with early death ik :J
data from AIDS, we can use the approximation for Y to obtain an '.':::::‘
estimate for k«=.263. Below, we show a table of predicted and , -
.:'0.*5 53'. }'.,.‘\ -t,.*‘a"“ < *.4\.' s.‘\-s'fw." -u‘\:ﬁ.‘x'l 1}}-}:’ Qﬁ:’\;.};\: -‘; Q,:‘ ': s \:: »:,.'«. Ny .M. ‘Q""‘ AN .p. N nIAY ?éﬁ
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e observad A!)S figures using tha sstimates above.

Table I AIDS Cases

3 Date Actual Predicted
May 82 255 189
s Aug 82 475 339
. NI
i Nov 82 750 580
Feb. 83 1,150 967

May 83 1,675 1,587

Now, using the somawhat smaller ko value of .25 and an initial
infective population of 2,000, we come up with the following
projections making the assumption that things continue with the
parameter values above.

Table 2. Projections of AIDS with ka = .25

YEAR CUM. DEATHS FRACTION INFECTIVE
| 6,434 004
2 42,210 .021
3 226,261 107
4 903,429 395
3 2,003,633 738
10 3,741,84) 278
15 4,650,124 .578
20 5,562,438 578

The fraction infective column has been given, since, in the

222
- LS n 2% "l W T R M My LSRR ) -~‘- -------- s rd - - " »
B R S e e R N SR




115 2::!;'.
Jomes R. Thempesn Mede! of AIDS R
absence of state intervention or medical breakthrough, it is this : " )
variable which provides the (sociological) feedback for the !3:: '
control of the disease. Any visibility of a loathsome and fatal '
disesse in the proportion range of one percent of the target ':.:,:E:E' :
population will almoest certainly cause members of that nggg _
population to consider modifying their membership in it. In the -
days of plague in Western Europe, one could attempt to leave &::-::
centers of congested population. [t would appear likely that gi:::;:
AIDS will cause a diminution of A and k and an increase of u. (it ‘ .
is very possible that the present government health service :E::g:':,: _
intervention actually decreases 8 and so increases the spread of E::i:‘:\'
the disease, but this affect is probably minor.) ‘.: 4
Let us consider, Tor example, the effect of diminishing k. We .::;E:'.; ‘
hote that in the early stages of the disease, an equilibrium .:g"{'?“"
value of k«=.1056 is obtained. At this value, with all other i
parameters held constant, the total body count after 20 years is :\?
47,848 with a fraction of infectives quickly reaching .000668. ) o
Now, let us suppose that fear reduces k to 20% of its present .%:% '
value, by the use of condoms and some restraint in activity. ‘f :
Then, the table below shows that the disease quickly retreats :". ~
into epidemiological insignificance. o
Table 3. Projections of AIDS with ke« = .05 ..
YEAR CUM. DEATHS FRACTION INFECTIVE \% -
| 1,751 .00034
R
2 2,650 00018 pis
3 3,112 .00009 p’? |
4 3,349 .00005 ;é;
5 3,471 .00002 ‘
10 3,594 .000001 :-':-,: 3
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But, let us suppose that a promiscuous fraction, p, retains a
ke vaiue L times that of the less promiscuous population.
Our model becomes:

dY /dt= ke Xy (Y oLY2)/( Xy oY oL {¥#Xo))-(Bop) ¥y
(2.6.8)  dYp/dt= ke LXp(Y | +LY2)/( X4V +L(YeXo))-(800) Yo
dXy/dt= - Kot X (Y| +LY2)/C Xq#Y | SL0Y2# X))+ (1 -PIA-UK,
/b= -kox LXp(Y 1 $LY)/( X #Y | +LLY#X])+pA-UXy

Below, we consider the case where k« =05,
L=5,andp =.1.

Table 4. Projection of AIDS withp~ .10

YEAR CUM. DEATHS FRACTION INFECTIVE
1 2,100 .0005
2 4,102 .0006
3 6.367 .0007
4 9,054 .0008
5 12,274 .0010
10 40,669 .0020
15 105,076 .0059
20 228,065 0091

we notice how the presence of even a small promiscuous
population can stop the demise of the epidemic. But, if this
proportion becomes sufficiently smail, then the disease I8
removed from an epidemic to an endemic situation, a3z we see
below with p=.05 and all other parameters the same as above.
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Table 5. Projections of AIDS with p = .05

YEAR CUM. DEATHS FRACTION INFECTIVE
1 1,917 .00043
2 3,272 .00033
3 4,344 .00027
4 5,228 .00022
5 5,971 .00019
10 8,263 .00008
15 9,247 .00003
20 9,672 .00002

The dramatic effect of a small promiscuous population may be
considered in the case where 90% of the population has a k« of
.02 and 10X has a kx of .32. This gives a population with an
overall ke of .05. If this low value is maintained across the
population, then we have seen that the disease quickly dies out.
But consider the situation when the mix is given as above.

Table 6. Projections of AIDS withp = .1, kx=.02, L~16

YEAR CUM. DEATHS  FRACTION INFECTIVE

| 2,184 .0007
2 6,536 .0020
3 20,583 0067
4 64,157 0197
5 170,030 0421
10 855,839 0229
15 1,056,571 0122
20 1,269,362 owz ,s:
B R R R A R S SRR RS
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One prediction about AIDS is that there is a “Typhoid Mary®
phenomenon. That means that the actual transmission rate is
much higher than had been supposed, but only a fraction of the
infected develop the disease quickly. Another fraction become
carriers of the disease without themselves actually developing
the physical manifestations of the disease, except possibly

Y "

R

P .

aftsr a long interval of time. To see the effects of such a

phenomenon, let us suppose ke =05, but SO%® of those who

contract the disease have a life expectancy of 100 months E:

6

instead of only 10. i
;ﬁ -

Table 7. Projections of AIDS with k«=.05 and Half of the i

4

Infectives with §=.01 3

i

:-

YEAR CUM. DEATHS FRACTION INFECTIVE 3

| 1,064 00066 i1

i 2 1,419 00075 3
z 3 2,801 .00089 o
N 4 3,815 00110 "‘
» 5 5,023 .00130 o
10 16,032 00330 §

: 15 44,340 .00860

% 20 115,979 02210 2
% Such a disastrous scenario is, naturally, made much worse as 3
' we increase the fraction of those with the long sexually active
g iife expectancy. For example, {f this proportion is 90%, we have o
\ 226 L
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Table 8. Projections of AIDS with 90% Having Life Expectancy r y
of 100 Months XK
e
oy
'~ ~'\" .
YEAR CUM. DEATHS FRACTION INFECTIVE it
W
1 457 .0094 ;:3:;‘:3::-
Jap{ A
2 1,020 0013 it
3 1,808 0020 b
4 2,943 0028 b
5 4,567 0041 i
10 32,911 .0260 i
indy
15 194,154 1441 A
A
20 776,146 4754 ;‘,
"y
i
If the Typhoid Mary phenomenon is an actuality, then the | ’.i':g
v
effect of AIDS is likely to be catastrophic indeed. (Note that no
presence of a promiscuous subpopulation is necessary to cause "g.':é
N
this catastrophic scenario.) However, this would imply that ‘!,’3"
AIDS was a new disease, contrary to the historical evidence. It .._?ﬁ"
seems most likely that AIDS has always been endemic in a , “
species of Central African monkey and that its presence in the
human population is of long standing. Indeed, the present entry X\
into the United States appears to be via Haiti, which has not had e

significant African immigration for centuries. Since the
disease has been noted in the United States, studies show the
disease present in Tanzania, Uganda, Zaire, etc. These studies

-’
LS H

53 S i

P4

contain even more noise than those in the United States, which
are very noisy indeed. (Also, it is interesting to note that

T AL

¢ ¥
claims have been made that the disease is frequently now ef N
epidemic proportions in the heterosexual population. How much .3‘\ S
-.ur_‘
of this latter phenomenon is real, and how much of the real A
[ )
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" heterosexual cases are due not to sexual contact, but other

§§ factors, e.g, zealous local medicos dispensing shots with

: unsterilized needles, is a matter of conjecture. If vectoring

X sexual vectoring into the heterosexual population is truly such

:é; an enormous problem in Africa, we need quickly to understand

A what the reasons are.) How likely, we must ask, is it that

{3 genetic drift in the AIDS virus would have pi-oceeded in such

' widely separated populations to produce epidemics in both the

W United States and Central Africa at the same time? Anecdotally,

;;; a pathologist at the Texas Medical Center has informed me th=t

::25. some of his colleagues, nearing retirement, now recall young

'!'n'§ male patients with AIDS symptoms as long as 30 years ago, but

,2 in such occasional numbers that there was no attempt to

;, characterize such rare occurrences in any systematic fashiun

% If AIDS is not a new disease (and evidence that it is might

:" well be investigated as an act of war by a hostile power with :
,E-. genetic engineering capabilities), then we ought to 1sk what has "'_ .
¥ changed in order that an endemic disease has rnow reached ;’é'
.5.. epidemic proportions. It seems most likely that the reason is i ‘.:;:
A that the large contact rates (k), which characterize the o
'§:~ frenetically homcsexual communities which exist in some . ":
-1 American cities, have never occurred before in the history of :z‘,
: the world. 3 ;;-?:s_.
W Some Suggestions From The Mode) » -
a Y, -
0 1. The most important elements in AIDS which will cause its
k essential elimination are: .' "
:;‘ low value of « ‘:Eg .
¢ awfulness of the disease o

d 228 |
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2. As the diseased fraction of the target population increases,
k will decrease
A will docrease
u will increase
3. Intervention by the state in the form of a publicity campzign
giving a graphically realistic assessment of the prognosis of s
AIDS victim would be useful. Because of the very significant
effect by a small subgroup having large numbers of potentially
contagious contacts, the closing of meeting places (bath houses,
etc.) where high contact rate activity takes place would be
A useful. If such places were closod, then the homosexual
communities in a number of American cities could possibly last
indefinitely. However, the resistance to such steps an the basis
of civil iibertarian ccnsiderations, will insure the destruction
M of thes? communities .
: 4. Vectoring inte the heterosexual population will not be a
A serious problem because of the much lower leve! of promiscuity
| among siraights.

5. AIDS wiil eliminaic the target subculiure, not through
7atality but through fear of fatality. The ultimate “curs” of the
B disease will be sociolsgical, rather than medical. «
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‘ CHAPTER 4. SOME TECHNIQUES GF NONSTANDARD DATA ANALYSIS
Ei Section 1. A Glimpse at Exploratory Data Analysis

1:.; Books have boen written on John W. Tukey's revolutionary
:q:E tesnnique of explorstory data analysis (which is generally
",‘\:; referred to simply as EDA), and we can only hope in a brief
;‘Iﬁ"’ discussion to shed some light on the fundamonteis »f ti.at
_3; subject. Moreover, the point of view that ! take in this section
ii. represents my own perceptions, which may be very diiferent
?‘ from those of others. Some of the enthusiasts of EDA fraquently
°'§ take o philosophical position which | would cherocterize as
‘.;3: being very strongly toward thoet of the Redical Pragmatist
_;; position in the introduction. A common phrase thut one heers is
Ef: Lhat "EDA allows the dota to speak to us in unfettered fashion.”
7;;;5 The “fetters™ here refer to preconceived madels which cen get
.i:i between us and the usefull informetion in the dete. Tha gosition
B might be characierized by Will Rodger's famous dictum, "It isn't
E 80 much ignorance which harms <. it's the things we know that
'. aren't so.”

gi Whereas | believe that percentions are aiway: in the Yight of
‘E‘:: preconceived modeis, which we hope to modify ano sce zvolve,
"‘3:. there is much more to EDPA than the anti-modal position of some
:. of its adherants. (t {s this "much mors” about which ! wish to
»ﬂ:: speak. The digital computer is a mighty device ‘n most
quentitative work thece days. Yei it has serious limitaticns
, which did not so much epply (0 the nuw discerded andlng devices
N of the 1950's. Analog devices weare very tnuch crisntad towerd

holistic display uf the output of a model. ‘They ware not
oriented toward deaiing with mountaine of date, ner were thoy
particularly accurate. Digital devices, on the other hand, cea be

2350
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made &s usccurate os wg wish end handie the storsge &nd

| manipuiation of digilized informetion eaxtremely weil.

l At this point in time, we have hardweare wkich is very much
[ more “trees” oriented than “forest” crienied. We con eusily ask
i that tiis or that sei of operations be performe’ on this or thai
magobyte of encoded dats. But ws ave incraasingiy awars of (he
cognitive unfriendliness cof coping with digitally processed
infaormation. Analog devices were wuch closer to the wey ths
human Lrain reassns than ere digita! devices.

Perhaps what is necded is a hybridized devica which
combines the satrong peints <Y both tha analog end dijital
computers. But such 2 hardware device will ba years ir brirging
to w sucrasstul construction. In m mean time, what do we do?
One appruvch might be simply to try to nset problems to death

on thé rumber crurcher. But guch an apprasch quickly stalls. We

have the computer powser to ontain pointwise estimmates of ten
dimensicna) density tunctions using cata sets of sizes in the
tens of thousands. Dul 'where shall we evalusts suck & fansity
function? Hew shall the computer be irained to distill vast
bedies of inforination into summaries which are usefui to us?
These are ditficuil problems and the answurs will be coming in
] wiecameal for some tima.

in the meantine, we nuad to cope. il is this necessity

somehuw to addross the fact that the digital computer has
outatripped our abilities to usc the informatien it gives us that

EDA addresses. Roeding 8 good anaiog nrocussor to handle the
aigits! informotion and having none, a human observer is used
te fulfill tho analeg funclion.

Onae tacurring theme in science fiction has baen the humian

whe is plugged into & computer system. But the observer in EDA,
23
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unlike the sci-fi cyborg is not hardwired into the system, is not
dopri"nd of hiz froewiil, is in fact ir. control of the digital
systom. One present limiletion 2f exploratery data anslysis is
the slow inpui-output perfermance of freewilled huinan
observers. Thus, man-in-the-icap EDA could not be used, for
example, to differentiate batween incoming missles and decays
in the svent of a large sca's attack. EBA is exploratory not oniy
in the ssnse that we con use it for snalyzing deta sots with
which we have litltle sxperience. We should aiso viaw EDA es un
alpha step towerd the construction ¢f the analog-digitnl hybrid
computer, wiich will net have the slow input-output speeds of
the human-digital prototype.

In the discussicn below, we shull address some of the
importan! human percaption bases of EDA. Let us give a short
list of some of these:

(1) Tha only funciion whkich cen be identified by the human
eye ie the straight line.

(2) The sye expects adjacent pixels to be likely perts of a
common whole.

(3) As points move far apart, the humen processer needs
training to decide when points are no longer to be considered
part of the common whole. Because of the ubiquity of situations
where the Central Limit Theorem, in one form or another,
applies, a natural benchmark is the normal distribution.

(4) A point remains a point in any dimension.

(5) Symmetry reducec the complexity of data.

(6) Symmetry essentially demands unimodality.

Lat us address the EDA means of utilizing the ability of the
humen eye to recognize a straight line. We might suppose that

gince linear relationships are not all that ubigquitous, the fact
232
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that we can recognize straight lines is not particularly useful.
Happily, one con frequently reduce monotone relationships to
straight liress through transformations. Suppose, for example,
that the relationship between the dependent veriable y and the
independent variable x is¢ given by

(4.1.1) y = 3¢-2%

We show a graph of this relstivnship in Figure 1.

UNTRANSFORMED DATA
k4]
1 L ]
%0 |
®
-3
¢
20 A
Y ¢
151 ¢
.
10 | .
[ )
s o ¢
¢ o
0 + * + + + + + + + T s & 4
0 1 2 3 4 S 6 7 9 9 10 11 12
X
Figure 1

We can easily see that the relationship between x and y is

not lineer. Further, we cee that y is increasing in y at a faster

than linear rate. Further than this, our visual perceptions ore E:TE:;:".
._4‘.‘:
not of great use in identifying the functionai relationship. .,-;
"

But suppose that we decided te pint the logerithm of y

%

against x as shown in Figure 2.
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TRANSFORMED DATA v
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i .
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1 — . et et — et — . ‘::7
® 1 2 3 4 S5 & 7 8 8 10N N i
X ]
s, .
. .
Figure 2 ?
'(
Now we have transformed the relationship between x and y to o ,:j
linear one. By recalling how we transformed the data, we con 0 .
complete our task of identifying the functional relationship ';i'
3
between x and y. So, then, we recall thot we started with en d
unknown functional relationship -;

(4.1.2) y = 1(x).

But then we saw that In(y) was of the form

(4.1.3) In(y) = a + bx.

Exponentiating both sides of (4.1.3), we see that we must have a
reletionship of the form:

(4.1.4) y =e® oP*. -
Once we know the functional form of the curve, we can estimate

]
.----
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4
the unknown parameters by putting in two data petrs (x,.y;) and {_

T O,

(x5.45) and using (4.1.3) to solve:
(4.1.5) In (ul) = @+ bx,

=2

In (y5) = 0+ bx, .
L 234
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This immediately gives the true relationship in (4.1.1).

Clearly, we will not siweys be so fortunate to get our
transformation to linearity after trying simply a semilog plot.
We might, for example, have the relationship
(4.1.6) y = 3x-4.
in such a case, simply toxiry the !ogarithm of y will not give a
linear plot, for
(4.1.7) in(y) = In(3) + 4lx)
is not linear in x. But, as we see immediately from (4.1.7), we
would get a straight line if we plotted In(y), not versus x, but
varsus In(x). And, again, as soon as the transformation to
linearity has been achieved, we can immediately infer the
functional relationship between x ond y ond compute the
parameters from the linear relationship between In(y) and in(x).

Now it is cleor from the above that simply using semilog and
log-log plots will enable us to infer functional relationships of
the forms
(4.1.8) y=aeb*
and
(4.1.9) u:axb, repectively.

This technique of transforming to essential linearity has
been used in chemical engineering for a century in the empirical
modeling of complex systems in mechanics and thermodynamics.
Iindeed, the very existence of log-log and semilog graph paper is
motivated by applications in these fieids. In the classical
applications, x and y would typically be complicated

dimensionless “factors,” i.e., products and quotients of
parameters and variables (the products and quotients having
beon empirically arrived at by "dimensional analysis”) which one

would plot from muwrimemt2a31r data using various kinds of graph
o
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paper until lineer or nearly linear relationships had been
observed. Butl the transformational lsdder of Tukey goes far
beyond this early methodology by ordering the transformations
ocne might be expecled to use and approaching the problem of
transformation to linearity in methodolical fashion. For
uxample, let us consider the shapes of curves in Figure 3:

P

~

aimw = e e

s

<o,

-~
o

Fa? N

S

Figure 3 4

X v
-

Now it is clear Lhat curve A is growing faster than linearly.

)
1

Accordingly, if we wish to investigate transformations which "

will bring its rate of growth to that of a straight line, ww need oy
236 P
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. to use transformations which will reduce its rate of growth. ':::i.:é'::.%
Some likely candidates in increasing order of severitly of E::'ﬁ::'ﬁ
reduction are:
; v'/2 i
; In{y) et
In(in(y)). o
Similarly, if curve B is to he transformed to linearity, we might 3: '}::.3
try, in decreasing order of :WI
severity: é‘.ﬁ? ,
exp(e) e
(4.1.11)  exp(y)
g ! e
y2 :EEEE':‘“E':
Putting the two groups of transformetions together, we can ‘%jj!
build a transformational ladder: .':'EEE:EE '
exp(eY) o
(4.1.12)  axply)
@, y4
92
Yy
!1”2
“ll4
In{y)
In{in(y)).
The shape of the original y curve points us up or down the ;:kj;
transformational ladder. .
Using the trensformational ladder to find move complicated .:‘:‘:
functional relationships between y and x becomes much more :::E:.;ﬁi
difficult. For exemple, it would require a fair amount of trial o

3
(3
. »
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and error to infer a relationship such es
(4.1.13) y =4+ 2x2 + x3
Furthermore, we must fece the fsct that in practice our data
will be contaminated by noise. Thus, uniquenegs of & solution
will likely svede us.

For a great many situstions, the wuse of Tukey's
tronsformational ladder will bring us quickly to an quick
understanding of what is going on. The technique avoids the use

of s criterion function and uses the visusl perceptions of en
observer to decide the driving mechanism.

For more complicated problems, we cen still be guided by the R
philosophy of th§ technique to use the computer to handle ;;%
situations like that in (4.1.13) even when there is a good degree ¢E§E§
of noise contamination. We might decide, for example to use ﬁ':g:

least squares to go through a complex hierarchy of possible "-\
- madels, fitting the parameters as we went. So, then, we might ‘!?E':'.?
employ :':;::E;E
(4.1.14) S(Model(in x)) = X(y - Mode1)2, ;,:"w
If we have on appropriately chosen hierarchy of models, we »?:f:%
might have the computer outputl those which seemed most '!'é'::
promigsing for further investigation. The problem of choosing "'
the hierarchy is o nontrivial probiem in artificial intelligence. i

We must reamember, for exemple, that if models in the hierarchy v
are overparameterized, we may come up with rather bizarre and "

‘ artificial suggestions. For example, if we have 20 data points, .;'
8 19th degree polynomial will give us a zero value for the sum 7\,- ]

in(4.1.14). B

Let us now turn to the second of the perception based notions e

of EDA: namely the fact that the eye expects cortinuity, that :"fﬁ

adjecent points shauld be similar. Thigs notion has been used ::‘ﬁ

238 T
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with good effect, for exampie, in “cleaning up™ NASA

photographs. For example, let us suppose we have a noisy
moenochrometic two dimensional photograph with light
intensities measured on a Cartesian grid as shown in Figure 4.

(x,y+h)
.

(x-h,y) ® ¢ ® (x+h,y)
(x,y)

(x,y-h)
Figure 4

We might decide to smooth the {)itensities, viea the hanning
formula

(4.1.15)K(1y) o J4KX,y)+Kx-h,y)+Kx+h,y)+Ky-h)+Kx,y+h)] 18

where 1(x,y) 18 the 1ight intensity at grid point (x.y).

Valuable though such 8 smoathing device has proven itself to
be (note thet this kind of device was used by Tukey and his
associates 40 years ago in time series applications), there s
the problem that outlters (wild points) can contaminate large
portions of a data set {f the digital filter is applied repoatedly.
For example, suppose we consider a nne dimensional deta set,
which we will smooth using the henning rule

(4.1.15Kx) 4 [2Kx)+Kx-h)+Kx+h)p4
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| At the ends of the data set, we will simply use the average of
the endpoint with that of the second point. We show below the

R data set followed by succesive hanning smooths:

e Table 1. Repeated Hanning Smooths.

p!

o Date H HH HHH

) 1 1 1 1

o 1 1 1 16.61

g! 1 1 63.44 . 9466

) 1 250.75 250.75 235.14

o 1,000 500.50 375.62 313.18

:;', 1 250.75 250.75 235.14

o 1 1 63.44 94.66

) 1 1 | 16.61

K 1 1 1 1

2

&

ff: We note that the wild velue of 1,000 has effectively
%"

] contaminated the entire data set. To resolve this anomaly,
i:' Tukey uses a smooth based on mediens of groups of three down
W,

" the dota set, i.e., we use the rule

(41.18)Kx) o Med [ix-h),(x),(x+h)]

{:‘ The endpoints will simply be left unsmoothed in our discussion,
o

3:. although better rules are readily devised. in the data sat above,

the smoothing by threes approach gives us what one would
W presumably wish, namely a column of ones.

As a practical matter, Tukey's medien filter is readily used
by the computer. It is a very localized filter, so that typically
b, if we apply it untii no further changes occur (this is called the
2 3R smoother), we will not spread values of points throughout
the dota set. Note that this is not the case with the hanning
filter. Repeated applicotions of the hanning filter will continue
to change the values throughout the set until a straight line
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results. Consequently, it is frequently appropriste to use the 3R si'éi'?
filter followed by one application of the hanning filter (H). The ':SEE'
combined use of the 3RH filter genersily gets rid of the wild LB
points (3R), and the unnatural platesus of the 3R are smoothed :;%E%E::
by the H. Fer more elaborate schemes are, of course, possible. ':EEESE

We could, if we believed that two wild points could occur in the

s*.. .9:..% '!

same block of three points, simply use a SR filter. \@'
ik
Below we parform a 3RH smooth on a data set of daily unit :«:3{
A
productiors on an assembly line. w ,
R
Table 2. Various Smooths. E:!::':'.:
Day Production 3 3R 3RH A
1 150 150 157.5 B
2 165 165 168.25 e
3 212 193 188 b
4 193 201 199 .::,33.
5 201 201 201 :::..:
6 220 201 199.5 s
7 195 195 190.25 Sl
8 170 170 176.25 o
9 161 170 167.75 v

10 182 161 160.25 R
" 149 149 142.25 o
12 10 110 1125 R
I3 95 101 101.75 b
14 101 95 87.75 o
15 60 60 64.25 bt
‘ 16 42 42 46.5 &
17 15 42 46.5 )
18 110 60 55.5 N
19 60 80 €0 60 nl
20 80 60 57.5 o
21 50 50 50 o]
22 40 40 45 o
Do o
Dl N
pay

[
Iy
A groph quickly shows how the 3RH smooth approximates . ;'
closely what we would do if we smoothed the raw deta by eye. : '3
L. - " W 0 LR 4 o .w\ ." ‘
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Raw and Smonti
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.'".
"' Al this point, we sirould mentioi thet all the smooths cf EDA
- ure curve fits, ot derived models. We cleariy find the 3RH
,E: smoath a more visually eppesling graph than the raw data. But
X the dats was measured preciseiy; the fluctuations reelly wery
4
4 there. So, in a sense, we have distorted reality by appiying ihe
KT
0 3RH sronth. Why have we applied it nevertheless? The human
»
g: visue! sysiem tnds to view and store in memcry such a record
]
2 halistically. Whether we smoothed the data or not, our eye
<y
N wouid cttempt %o carry out more or iess equivaleut cperotions
'. {0 those of 3RH. Vhe human eye expects continuity and we 4o not
4 readily perceive dale digitally. The smacth gives us o
. benchmoark (the forest) cround which we can atlempt to place |
L 1_
, the trees. For example, wo might ask whai was cousing the 2;«;
) i A
.l

unexpectediy low production on duy 17. As ve mentioned earlier,
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EDA tries to asgisi humens to carry out the unalog part of the
anslysis process. The 3RH smooth dere on the computer very
nearly reproduces the processing carried out by the human aye.
in a very real senss, Tukay's decaptively simple 3RH smooth is
a povrerful result in ariificisl intelligence.

Let us sicw address the third point, the making of the
deci¢ion that & point has removed itself from a class by extreme
behaviour. ‘We note that we have aliready addressed this point
somewhot, since we have discussed the ugse of the median and
hanning filters.

If we seek s benchmark by which “togetherness of a group of
points can be measured, we might decide to use the ubiguitous
normal distribution. We note that for this distribution,

2
41970 Plxxl=  ypvtzm]  expl-t 2 /24t

whare z = (x-u)/o , with X having mean p and standord
deviution g, respectively. For the normal distribution, the value
z=.675 in {4.1.17) gives probabjiity .75 By symmetry, the value

2 = ~.675 gives probability .25. Tukey calis the corresponding x
values “hinges.” The difference between these standardized
values ts 1.35. Let us call 1.5 times this H spread (interquartile

o]
st
N7

12 .‘g
g

&

Loy

RO

range) a step. Adding a step to the standardized hinge gives a z g
velue of 22.7. This value of 2.7 represents the standardized E\:;
“upper inner fence.” Yhe probehility o normal variate will be ‘\\{;H
grealer than the upper inner fence or 1ess than the lower inner )
fence is .007z one percent. Adding snother step to the upper :ﬁ'q':

inner fence gives the “upper ouier fence” (in the standardized

case with mean 0 ond standard deviwtion !, this will give
243
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2=4.725). The probability of u mormal variate not feliing sl |
betwasen the outsr fences is .0000923, ronghly two chencas in 4 ‘?'
million. It could be argued thatl a velue which falls outside the ;s':f
inner fences bears investigetion to see whaiher it islrpallg 8 3'?2‘:* et
member cf the group. & value sutside the outer fences i3 mest 'ﬁ':*-f‘i"‘-”
likely not & mambei of lhe group. {Woie thet um. thesy : o"
statuments assume the date sot is of twndest size. 17 thure are e
a million dats points, al} from thy rome rontinl gictiibytion, we | ‘
N would expact 700 to fall outside the innsr fences and 2 to fall . ot
' outside tha outer fences.) ‘ , %‘.‘51; 1
tet us exemine a data set of annual incomes of  sel af :Ef;a
thirty tax returns supposadly chosen at random fiom those filed | ,_ 3
in 1938, Suppose the reported incomes are 700, 806, 1500, 5
2500, 3700, 3800, 5300, 5400, 5900, 6100, 670, G300, 7100, ’
e 7200,7400, 7600, 79060, 8100, 8100, 8900, 9CV), 9200, 9300, ‘
9500, 10400, 11200, 13000, 14749, 15120,15900 . :::’3?’:”
- | We first construct a “stem-end-leaf” plot with units in e
. hundrads of dollars. We notice that the “plot” appaars to be @ e
| hybrid between & table and a graph. In reccrding the actual :.i
] values of ths data, instsed of only counte, Tukey's v,
‘e stam-and-1vaf plot gives us the visual information of o w
histogram, while enabling fuil recovary of »ach data poiat. Here Al
i is a0 exemple where ws con see hath the forest and tha tress. :; 3
¢
;
{
244 '
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Table 3. Stem-and-Lea?---unit 100 doilsrs

; Depth
y 2 o 78
3 1 5
4 2 5
6 3 79
‘ 4
| 9 5 349
£ 3 12 6 179
g 17 7 12469
. 13 8 119
"%y | 10 9 0239
. 6 19 4
b 5 12
12
< 4 13 9
3 14 7
<. 2 i 1
N 1 16 9

From the above stem-oand-leef plot, it is clear that cartain tacit
assummptions have besn made. For exainple, we compule the
“dapthc” from both ends of the za». Thug, a kind of symmetrical
besichmerk has heon sssumed. Let us further point to symmetry
by computing the median { the average of the twe incomes uf
depth 15 from the top 2:d that of depth 15 from the bottom),
nanely 7500 cdollars. The two hinges cen be obtained by going up
. to tha two averages of incomes of dapth 7 and 5. Thus the lower
| hinge 16 5350 and the upper hinge is Y600. A e{ep is ygiven by
{(3609-5350)1.5 = 6375. Thus, the two inner (vnces ure given by
~1025 and 13975. The two outer fences are given by -7400 and
22350. We note immediuteiy ore income (16900) falls cutside
tha inner Vances, hut nons outgide the ouler fences.
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Lat us now consider the various populer summary plots used
fur the incomo infesmation. W2 have alrewdy seen one, ke
stem-and-leat.  Although tiis piot luoks very much iike a
historgrem urned on its zide, we note thot it showe not oaily
the forest, byt aiso the trees, sinc? we could completely
recevar our tebls from the plot. (a the presant situation, the
stem-and-’oal mignt be suificient detes compression. Llet us
considar, however, some other piots.

The “live ngurex s&mmn*fu' plot delow shows the ma9A,
hinges anu extruma upper and !ower internes.

) Five Figure Summary

Figure &

i Clcarly, the five figure summary i¢ much niore compressed

s than the stem-end-leef. But, it drens emphasis to the suppesed
[4
] certer of symmutry anu looks at thi hinges end extremal vaiuves. R
v el
Naturelly, es the sampie bscomes larger, we would expect that ""E::;~.
&l
i ihe median and the hinges do ot change much. Bul ‘he extremal "!'.‘"-
'bd values certeinly wili. A gre-hicol enhancement of the five figure o '("
A% 2
T summary s the “bov-ond-whiskers™ plot shown in Figurs 7. '.' ’
A
" gt
W, ®
0'.::;',
o
'.l‘-"t‘
l':|.|:.
e
m’d
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- OO O Cl o o LT 4 LAl A Brgla R '-n,\‘-z46.- bR SRy . . 3}
A A A VA S G A e S A




225
James R. Thempaen Exploratery Dets Ana)gsis
Figure 7
Box-and-Whiskers Plot ;.00

15000

i 12500

Income (dollars)
10000

7500

5000

2500

0

A generally more useful plot than the box-and-whiskers
repfasontation is the “achematic plot.” Essentially, in this plot,
the ends of the “whiskers® ere the values inside the inner fences
but closest to them. Such values ere fermed “adjacent.”
Essentially, then, the schematic plot replaces the extremal
values with the .0035 ‘pérconules.'

247
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Figure 8

Schematic Plot
17500

15100 = = == m o= = = 15000

12500

Income (dollars)

10000
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5000

2500

T D I g S —

In the above, we seem to have a date set which is not at all
inconsistent with the assumption of being all "of a piece.” We
might have felt very differently if, say, we had been presented
with the above income data which someone had mistakenly
raised to the fourth power. Going through our standard unalysis,
we would find values outside the upper outer fence. VYet, the
dato has essentially not been changed, only transformed. Before
declaring points to be untypical of the group, if we believe in
symmetry and unimodality, we should run through our
transformational ladder until we have brought the data to a
state of near symmetry. If we did this, for the example
mentioned, we would arrive at something very near the original

deta given in Table 3, and that data set, as we have seen, does
248 o
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seem to be part of the same whole.

Now it is clear that the representations of dates sets
discussed ebove eare built upon the assumption of
transformability to symmetry about an internal mode. If we
accept this proposition, then the further use of the normal
distribution as 8 benchmeark is nontraumetic.

in the next section, we shall briefly discuss an approach,
nonparametric density estimation, which does not build upon the
assumption of unimodality. Obviously, such an approach must
struggle with representational difficulties about which EDA
need not concern itself. There is 8 crucial issue here. How
reasonable is it to assume unimodality and symmetry, and does
this assumption got better or worse as the dimensionality of the
dats set increases? My own view is that the problem of dealing
with the pathology of outliers (extremal points which are to be
discardec from membership in the deta sel) is not as serious as
that of multimodality, and that the even more serious problem
of data lying in bizarre and twisted manifolds in higher
dimensional space ought to begin receiving more of our
attention.

One further issue that noaparametric density estimation
investigators must face is that of representation of the density
function suggested by the data. For higher dimensional
problems, EDA neatly sidesteps the representational issue by
looking always at the original data points, rether than density

contours. Let us consider two dimensional projections of 8 three
dimensional data set generated by the routine RANDU. In Figure e
9, we notice what appears to be more or less whot we would

expect o rondom set to look like. But using the interactive 5.
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routine MacSpin (02 Software), we can “spin” the data around the

axes, to errive el the nonrandom looking lattice structure in
Figure 10.

)
‘ L]
. |‘"":... 0 ",\ ‘. -.': '."' .

Figure 9
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Figure 10
The human-machine interactions possible with MacSpin , @
persoral computer version of Tukey's PRIM-9 “cloud analysis,”
are truly impressive, certainly the most impressive graphics
package | have yet seen for a personal computer.
Several problems of dealing always with a scattergram
bosed analysis are obvious. For example, as the size of the data

set approaches infinity, the data points will simply blacken the

P:'

scrgen. It would appear that there ere advantages to dealing DRy
with date processors that converge to some fixed, informative i,:,
B

entity--e.g., the density function. Furthermore, whereas the

automitization of such EDA concepts as the 3RH smooth are
straightforwerd, the taking of man out of the 1sop with MacSpin
is a very complicated problem in artificial intelligence. By

i o TR .

X,

opting not to use such easily automated concepts as centouring,

“x_x

EDA relies very much on the human eye to incorporate continuity
in data analysis. 251 -
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Section 2. Nonparametric Density Estimation

Perhaps the oldest procedure for looking at continuous data
is that of the histogram and its precurrsor, the sample cdf. We
have earlier discussed the life table of John Graunt, which gave
the world its first glimpse at a cumulative distribution
function. It is interesting to consider that this first approach
to continuous data anaiysis started with an actual data set,
was heuristic and preceded parametric data analysis. We see
here a rather common trend in statistics, and in science more
generally, namely that the search for a solution to a real
problem is generally the way that important technique is
developed. Although many of us spend a great deal of time
trying to find applications for “useful” theory, historically the
"theory in search of an application® approach is less fruitful
than attempts to develop the methodology appropriate for
dealing with particular kinds of real world problems,

If we know virtually nothing about the probability
distribution which generated a dat2 set, there are a number of
ways we can proceed. For example, we might decide (as most

’ do) that we will demand that the data conform to our
predetermined notions of what a “typical® probability dengity
function looks like. This frequently means that we will pull out
one¢ of a rather small number of density functions in our memory
banks and use the data to estimate the parameters
characterizing that density. This is an approach which has been
employed with varying degrees of success for a hundred years or
50.

There is a strong bias in the minds of many toward the
normal (also named Gaussian or Laplacian) distribution. Thus,

¥
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we could simply estimate the mean p and variance 02 in the
expression

(4.2.1) fxlp,02)= 174 (21102)expl~(x-p)2/(20?)).

Such a belief in a distribution as being “universal® goes back to
the nineteenth century. Francis 6alton coined the name “normal”
to indicate this universality. He stated (1879), "I know of
scarcely nothing so apt to impress the imagination as the
wonderful form of cosmic order expressed by the ‘Law of

Frequency of Error.’ The law would have been personified by the
Greeks and deified, if they had know of it. It reigns with
serenity and in complete self-effacement amidst the wildest
confusion. The huger the mob and the greater the apparent
anarchy, the more perfect is its sway. it is the supreme law of
Unreason.”

Galton is here discussing the practical manifestations of
the Central Limit Theorem, i.e., the fact that if we sum random
variables from most practical distributions, then the sum tends
to a normal variate. So strong was Galton's belief in normality
that in cases where the data was manifestly non-normal, he
assumed that somehow it had been run through a filter before it
was observed. Thus, Galton proposed such related distributions

as the log-normal. Clearly the transformation to symmetry
which is so important in EDA is very much in the spirit of
Galton.

in most applications, it is very hard to see how the
resulting data points are each in actuality, the result of a
summing process which would produce normality. Nevertheless,
it is a practical fact that very many data sets either are nearly

normal or can be transformed to near normality by a

transformation to symmetry. Galton was not naive, even less so
253
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was Fisher. Both used the assumption of normality very

5 extensively. Although we can get in serious trouble by assuming
f-“ that a data set is normal, it seems to be a fact that we get
: (;E effective normaiity more often than we have 2 right to expect.

b when data is not normal, what shail we do? One approach
might be to seek some sort of transformation to normality, or
| A (in practice, almost equivalently) to symmetry. This is very
3 much in the spirit of EDA. If the data can be readily transformed

to symmetry, there is still the possibility of contamination by
= "outiiers.” These may be introduced by the blending in of
"t observations from a second distribution, one which does not
] relate to the problem at hand, but which can cause serious

B difficulties if we use them in the estimation of the
EE: characterizing parameters of the primary distribution. Or,
":’ “outliers® may be actual observations from the primary
EE« distribution, but that distribution may have extremely long
: .:5 tails, e.g., the Cauchy distribution. From one point of view, EDA
* can be viewed as a perturbation approach of normal theory. The
, li. data is "massaged” until it makes sense to talk, for example,
E‘E: about a location parameter.
. Nonparametric density estimation has its primary worth in
:f' dealing with situations where the data is not readily
b transformed to symmetry about a central mode. As such, it is
E much farther from normal theory than EDA. Although some (e.g., :
' ;:2 Devroye and Gyorfi) have developed techniques which are :}
3: designed to handle outlier problems, the main application of f,
i nonparametric density estimation is in dealing with regions of }

relatively high density. Unlike both classical parametric
estimation and EDA, the methodology of nonparametric density

o e

s

estimation is more local and less global.
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For example, let us suppose that the data comes from a ":E:';

50-50 mixture of two univariate normai distributions with unit .3:::!' '

variances and means at -2 and +2, respectively. The classical

approach for estimating the location parameter would give us a b
value of roughly 0. The blind use of a trimmed mean approach ::::';::
would also put the location close to 0. But, in fact, it makes no '.‘.
particular sense to record O as a measure of “location.” We ,)@z _
really need to use a procedure which tells us that there is not '[
one mode, but two. Then, using the two modal valuas of -2 and
+2, as base camps, one can gingerly look around these lccal :E;:'::
centers of high activity to get a better glimpse at the structure '::ééﬁ |
which generated the data. x;}g’
Naturally, for low dimensional data, simply looking at ‘
scattergrams would give the user a warning that normal theory :'»::

(or perturbations thereof) was not appropriate. In such cases,
such EDA approaches as MacSpin are particularly useful in
recognizing what the underlying structure is.

As has been noted in the section on EDA, there are problems 2% :
in getting the human observer out of the loop for such i o
procedures as MacSpin. Another problem is that in cases where
there are a great number of data points, a scattergram does not
converge to anything; it simply blackens the page. The e
scattergram does not exploit continuity in the way that ' |
nonparametric density estimation does. |t makes sense to talk

about consistency with a density estimator. As the data gets

more and more extensive, the nonparametric density estimator j?”c

converges to the underlying probability density which '5.

characterizes the mechanism which generated the data. '4',
To get to the “nuts and bolts” of nonparametric density :“&.T.

estimation, we recall the construction of the histogram. Let us il
255 ey
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take the range of n univariate data peints and partition it into m ‘??
E bins of width h. Then the histogram estimate for the density in ’g‘
a bin is given by ;‘
{4.2.2) fy(x) ~ (*# data points in bin containing x)/(nh). 4
&
) .
~ 3
1 f%
Figure 1 ;ﬂ
The graph in Figure 1 shows the kind of shape of the histogram %}
estimator.  Clearly there are disadvantages.The histogram “ :
: estimator has discontinuities at the bin boundaries, and any %'::{
naive atiempts to use the estimator to obizin derivative
s information cof the underlying density are inappropriate. The ':?é;
g mean square errorr rate of convergence of the estimater is !‘;’3;‘
' n"2/3 A recent paper of Scott (1985) shows how by simply iy
! computing 16 histograms, the origin of each shifted from the '
. preceeding h/16 to the right, and averaging poiint by point over .':Ef%
E fach of the histograms, many of the undersirabie propertiesAof
, histograms are overcome, while still retaining the rapid LA\
E computational speed of the histogram estimator. (For @n :.:,
% interestiny use¢ of the histogram in bivariate systems, see .
E Husemann (1986).) '-:.;
E Next to the histograin (and, significantly, the histogram is :.:
siill the most used nonparametric density estimator) the ntost e
5' popular nonparametric density estimator is the kernel ::_,
estimator, proposed first hy Rosenblatt (1956) and extended and 3;?‘
explicated by Parzen (1962). Here, the estimator at a point x is 8\\
256 b
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given by

(4.2.3) fy(x) = Z;K({x-x{)/h)/nh

where K i5 a probability density functinn 2nd the summation is

over the data points (x;}. A popular kernel here is Tukey's

biweight
(4.2.4) K(y) = (15/16) (1-y2)Z for lyl«1.
The order of convergence of the mean square error for most
kernels is n~4/3 Moreover, the procedure gives a smooth
estimate as shown in Figure 2. A practical impelementation of
b the kernel estimation procedure (NDKER) is included in the
popuiar IMSL library.

Figure 2

it is possible to use estimators of this sort to oabtain
derivative estimates of the underlying density. The

Q

determination of the bandwidth h can, in theory, be determined

Pl

from the formula
(4.25) h = n~ /31K 2(y)dy/{[y2 K(y)dy)211/Sx (j(£(y))2dy]~ /5.
The problem here is that we do not know f, much less . An

e

X7

approach suggested by Scott, Tapia and Thompson (1977) is to
make a preliminary guess for h, use (4.2.3) to cbtain an estimate

for f, differentiate it, and plug into (4.25). The process is

X0 P TN @ TS T

continued until no further change in the estimate for h is
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obsarved. A mury sophiscicated approach for the selection of h

has recently been givern by Scott and Terrell (1986).
A more local procedure than the kernel estimator is the kth

B T

nearest neighbour kernel estimate
(4.2.6) 1(x) = ZK({x-x%;}/d, (x))/(ndy(x)),

)

: -.».
S S
1 LS
"
N

_.P.(‘
. .
v

where dk(x) is the distance from x to the kth data point nearest

1 to it. The bangdwidth parameter here is, o7 course, K.

\l
e

ey, ..
(

Another astimation procedure is the maximum penalized
likelithood approach suggested by Good and Gasking (1971) and
' generalized by deMontricher, Tapia and Thompson (1975) Scett,
Tapia and Thompson (1980), and Siiverman (1982). In one of the
simple formulations, the procedure finds the f which maximizes

(4.2.7) J(F) =Zlog f(x,) ~=(1"(y)2ay.

An implementation (NDMPLE) is given in the IMSL library. The
maximum penalized likelihood approach is particularly useful #n
problems associzted with time dependent processes (see, e.g.,
Bartoszyiski,Brown, McBrids and Thompson, 1981).

it is unfortunate that well over 95X of the papers wrilten
in the area of nonparametric density estimation deal with the
univariate data cace, for we now have many procedures to deal
with the one dimensional situation. The problem in the higher
dimensionai case is very different from that with one
dimensional data, as we argue below.

Suppose we are given the choice between two packets of
information. &
A: a random sample of size 100 from an unknown denisty
B: exact knowledge of the density on an equispaced mesh of

size 100 petween the 1R and 99% percentiles.

For one dimensional data, most of us, most of the time will opt :
258 i
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for option B. Heweaver, far four dimensional data, the mesh in
option B would give us only slightly more than three mesh points
per dimans:on. W2 might (ind that we had our 100 precise
values of the density function evaluzted at 100 peints where the
density was effectively zero. Here we se¢e the high price we pay
for an eauispaced Cartesian mesh in higher ¢:mencions. if we
insist on using it, we will be spend most of our tima flailing
about in empty space.

On the other hand, information of packel A remains useful in
four dimensional space, for it gives 100 points which will tend
to come froin regions where the density is relatively high. Thus
they provide anchor points from which we can axamine, in
gpherricai search fashion, the fine structure of the dansity.

Now, we must observe that the criteria of those who dea,
almest exclusively with one dimensional data is to transiornm.
Iinformation of type A into information of type 8. Thus, it s
very wrong in nonparametric density estimation to believe that

we can get fram the one dimensionai problem to those of higher
dimensionality by 2 simple wave of the hand. The fact iz that
“even a rusty nail® works with one dimensional data. We stiil
know very little about what works for the higher dimensivnal
problems. Repre:aentational problems are dominant. The
difficulty is not so much being able to estimate a density
function at a particular point, but knowing where to look. We
can, if we are not careful, spend an inordinate amount of time
coming up with excellent estimates of zero. We shall discuss
two of the more promising avernues of dealing with the higher
dimensional problem below. The first is an attempt to extend
what we have learned in density estimation in lower dimensions

to higher dimensions, ozrgghasizing graphical display. For

0 R 1 S N S R SRS A A Y
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example we see in Figure 3 (Scott and Thompson, 1983) a display
of ostimated density contour's uging four dimensional remote
sensing crop data. We note that it is cquite possible to
demonstraie three dimensional densities, by the use of
equidensity contours. Cleariy, as the value of the density
function increases, we should expect to see a smaller region

which satisfies the condition

(4.2.8) f(!l,!g,!&;) 2C.

The handling of the fourth dimension, unfortunately, must be
handled in a fasnion uasymmietrically from the other three
dimensions. In Figure ¥, we have employed a bar cursor at the
bottom of the figure for the magnitude of the fourth variable.
We note the presence of two well separated regions

. corresponding to a’m'agnttude of 24 for the fourth variable. To

give an idea of the scattergram alternative, we show in Figure
4, z display o7 the data from which Figure I was generated.
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Prabebiity Denality: Extimation in Higher Dimersions "

Filgure 3. 1 pur cant, 15 per cent, T
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In Figure S, we hote a naturai extension of the density
estimation procedure above using six variables.

E,...;"...\_ f=1 Plot of f contours in x,y,2
T T with mouse set in control
% gl ok
",.-“"".'\.,.. \'. box at’ (u ;v ;z )
; I3 : A\Ill
© A=
; " \\ ’ ]
| ¢ "‘. ; !
\~ S Z

-*
-

oot ~“CONTOUR REPRESENTATION

CONTROL BOX

s K
!
| ;
- )
o o
-: . W
- |
| we L
N
o -
. .‘.' \r‘ A .~"l v
\ '.
u '.
Figure 5 .
The contours are given in terms of three of the variables, and
the magnitudes of the other three are varied using a control box.
"
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James R. Thempson Density Estimeation 'm .
These procedures, on the SUN 3-160 system are under '-‘333':,25

investigation at Rice. DRs

The similarities between such a density estimation R
approach and EDA scattergrams are clear. The problem of | et
"fading to black® with large data sets has been eliminated. e
Moreover, the presence of a “man in the loop" would seem to be

il
LA ;nu

'0:.: 3

less than with the scattergram. The notion of a region having 3,:;:-':;‘:%::5
points of density greater than a specified amount can be i':gﬁ“:iggf
automated.
A second approach (Boswell,1983, 1085) is automated from &EEEE:\E‘:EE‘ _

the outset. The objective of the Boswell algorithms is the ;::;'::‘:';'.:':E
discovery of foci of high density, which we can use as "base 3"'?"%;;
camps™ for further investigation. In many situations, the ;E::;EE::';EE
determination of modal points may give us most of the .E!E:é':i‘é':
information we seek. For example, if we wish to discriminate “!.‘,
between incoming warheads and incoming decoys, it may be '?.‘;:‘:.EEEE
possible to establish "signatures” of the two genera on the basis EEE%EE’:E‘:
of the centers of the high density regions. ""'Zf.f':::;_
We shali below give a brief glimpse at the simplest of the ;:::Eg&:;
Boswell algorithms. We are seeking a point of high density, a ?:'E:S
local maximum of the density function. ,‘
(4.2.8) Algorithm 1| .;g:;;’
Xc™ X ) ':..."Q::E

do until stopping criteria are satisfied :
Xc¢--- mean of k nearest neighbours of x.. kﬁzif:

In Figure 6, we sketch the result of (4.2.8) when applied to the .g;.g
estimation of a normal variate centered at zero with identity 1"-‘,:;5""5‘
covariance matrix based on a sample of size (00 for ':?::.".'{
dimensionality (p) through 100. If we look at the standardized .-‘.;2'.:,'.:'.'

Q
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9 James R. Thempeon Density Estimation
E (divided by the number sf dimensions) mean squared error of the
EE estimate, we note that it diminishes dramatically as p
0 increases to 5 and does not appear to rise thereafter.

R MSElp  Estimation of u from Multivariate Normals

]

) 5

0

: 4

¥ 3

5 2 k=10

T _ |(-2101)0

5 10 20 30 40 50 -

ﬁ. p= Dimension

~(' Figure 6

A Naturally, we need the algorithm to deal with the more complex
situation where the number of modes is large and unknown. This
§: has been done with the Boswell approach by making multiple
i starts of the algorithm (4.2.8), saving the various x. values in a
'E' file, and coalescing the estimated modes into a smaller
" collection.

2 (4.2.9) Algorithm 2

;.: For each data point X| set x.= X

’ Perform Algorithm 1 to produce mode estimate m;

§ : Save m; in a workfile

i - end

Analyze the set (m;) by cluster analytic techniques or by

repeating Algorithm 2 with the {m;} treated as the input data

e - e - - .

set.
r
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Algerithm 2 appears to perform reasonably well as a
technique for finding the modes of mixtures of distributions
(e.g., Fisher's Iris data).

In summary, the primary energies of density estimation
investigators ought to be directed to the multivariate case.
Nonparametric density estimation, together with EDA
scattergram analysis appear to be the major contenders for
handling higher dimensional data whose generating density is
unknown. Many of the reasonable “nonparametric® techniques,
such as rank tests, are only usable on one dimensional data. We
now have the computing power available to answer some really
important questions of multivariate data. For example, what
price do we pay for following the usual technique of looking at
low dimensional projections? Ought we to make. a serious
attempt to deemphasize the Cartesian coordinate system and go
to spherical representations for multivariate data? Wwhen the
data is not unimodal, ought we to move to multiple origin
representations rather than single origin representations? How
soon can we develop completely automated nonparametric
density estimation algorithms for detection purposes? Can we

use nonparametric density estimation as an exploratory device

to get us back to algorithms based on modified normal theory? FQ:
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Jomes R.Thempesa 2hé Stoin Estimation
Section 3. Stein's Paradox

Suppose we wish to estimate the mean of a normal
distribution with covariance matrix 02| on the basis of an

observation X=(xy,Xp,...4p). Then, if we use the loss function
L(u*.n) = E(uj*-uj)zlp. the usual estimator X has uniformly

larger risk than some estimators of the form u**- g(xTX) X,
where ¢ is an appropriat:ly chosen function nondecreasing
between O and 1; l.e.,

(4.3.1) Q(u®®) = EIL( ™™, 1)) 02
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Lindley in commenting on 2 paper by Efron and Morris (1973)
accordingly informs us:

....Now comes the crunch--notice it applies to the general linear
model. The usual theory says x; (maximum likelthood) is the

best estimate of u;, but Stein showed that there is another

estimate which is, for every set of pu's, better than it, when
judged by the squared-errcr criterion excapt when only one or
two parameters are invelved. In other words, using standard
criteria, the usual estimate is unsound. Further calculation
(described in the paper) shows that it can be seriously unsound:
with 10 parameters, quite a smail number by the standard of
present-day applications, the usual estimate can have five
times the squared error of Stein's estimate. And remember--it
can never have smaller squared error..the result of Stein
undermines the most important practical technique in
statistics....

The next time you do an analysis of variance or fit a
regression surface (a line is aii right!) remember you are for
sure, using an unsound procedure....

Worse is to follow, for much of multivariate work is based
on the assumption of a normal distribution. With known
dispersion matrix this can again be transformed to the standard
situation and consequently, in all cases except the bivariate
one, the usual estimates of the means of a multivariata normal
distribution are suspect...

To get a better feel for what is happening, let us consider the

one dimensional case.

Suppose we wish to estimate the mean of a random variable X
on the basis of one observation of that random variable using

estimators of the form

(43.2) pg = ax.

We will pick a in such a way as to minimize

(4.3.3) Q(aX) = El(aX-p))2 = aZo?s p?(1-2)2

Taking the derivative with respect to a and

setting it equal to 0, we find the optimal a to be given simply by
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g (4.3.4) a = p2/(p2+0?). .;
Using this a, we find that :33 '
l' (4.3.5) 0(aX) = p2/(n2+02) 02 ¢ 02 . ‘
é This is an old resuit and can be found in Kendall & Stuart. %:3‘
. Of course, in practice, we will not have u or o2 available for our 7.:}":'-
finagle factor a. Still, we should ask why il is that such a V
factor, were it realisticelly available, helps us. Perhaps we get ,:':i'; '
| some feel if we rewrite aX as (X/p)/[1+02/p2} p. This gives us EEE'-:;
p the truth---pu---degraded by a multiplier which, if p be small :j%
E {relative to ¢2), would discount, automatically, large values of '{::;g
‘ X as outliers. If p is large, (relative to 02). then we are left Sf'f
: essentially with the usual estimator X. Thus, there is no paradox é‘%
'. in the improvement of ax over X as an estimator for the one 5:';35
; dimensfonal case, if we know & and o2, Note, moreover, that the 'E!: '-
,'. argument to find a did not depend on any assumption of ]
:: normatity, only on the existence of a finite variance. ;..i’\i
\ Again, in the one dimensional case, we should address %g:‘:
) ourselves to dealing with the situation where we do not have Q;.,
or o available for our finagle factor. (I shall assume we do EL’\-[
' have o2 for reasons of convenience, but the argument holds if we %r:
4 do not have o .) in such a case, we will have available the E»
estimator X2/(xZ%s o2 ) X. "
i But here, we generally lose our “free lunch™. If the data is 'L
) normally distriduted, then our risk curve looks like:
i :;. s
. |
N 2
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Risk of X2/( X2 + 02) X

o2 ﬂ

u

Figure 2
Let us suppose that we were allowed to use the following

strategy: we will have one observation X, to use for the

estimation of y. But, in addition, we will have p-1 additionail

observations of X: X, X5, ... Xp to be used in an a of the form:

(43.6) a= (32X 2y 3X 2, po?).

Now,
(4.3.7) ):ijlp ---> u2 + g2 ,aimost surely in p. (Ej,m‘
Thus, our finagie factur a approaches ;~ .
2, 42 2 2 . . 9
(4.3.8) (p<+0c)/( p<c+ 20°) for p “large. 523
This would give, for large p, ‘m
y W
(4.3.9) Q(aX) = [u4 + 302 u2 + 0%/ [u"‘ +492 u2 +4 0% 02 ¢ 02 v
d
We might suspect that something in the »tein formulation may .
ailow such a phenomenon to occur. Indeed, this is the case.
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0
() I"
S,
i For the loss function considered .:?::‘.'. _
’ '5.".‘:
(43.10) Ltu",w) = 2w "-up?/p,
SO
i :g{'.
" and estimators of the form: e
t‘bl"
(3.1 0p™= xTx /1 xTx +ca?] X, o
the risk is not dopendent on the allocation of the [ujl foi any ,;.'
o"':'.' )
fixed Zu 2 (Alam and Thompson proved (1968) that, in the T
'..I"
normal case, this estimater beats X for p>2 if 0<c<2(p-2).) .'
Accordingly, we need only consider the case where ¥ = ;2;‘.@‘.:
AN
(K.K,..,H). But this reduces immediately to the kind of one i;'::g:{
dimensional estimator we showed had asymptotically (in p) ';;'“,,-Ei
smaller risk than X,.(Apparently, for the normal case, the 'é:é::‘
e
asymptotic result starts impacting for p=3.) Thus, it is the ::35;“;
M)
assumption of a loss function of a particular form, which gives "‘"-‘"_
the apparent Stein improvement. :5':
Note that for unequal weights and unknown variance, the Stein '::".‘
¥
result holds, 77 we know the weights in ihe less function '
(43.12) L™ ) = Zw(ny - n 2/, i
e
But is 1t not reasonable to assume that we will frequently Pl -
know the weights precisely? Atcer all, cost functions are 5"
AN
frequently common. So, for example, we might need to estimate
R -
IW|i) , where the weights are known. Note that this is the one A
v r~
o dimensional estimation problem where we know, in the normal E;;}:-‘ ;
’ case, we cannot uniformly beat 3w X;. :E:"
oy
The cases whare we know the weights in the Loss function ,5..,
o
(4.3.13) L(u*.u)’)‘.wj(uj*ml)z/p, R
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are rare. Any strategy which assumes we do have precise
knowledge of the weights is likely to be dangerous. Let us look
at the more realistic situation where we do not have precise
knowledge of the weights. Thus, let us consider the loss
function

(43.14) Lp"pb) =3 "'lt (u;-;xj)z/p,
where, for all teT, I wjt =1, wjt 20.
Let the risk Q(u™:u,t) = E[ L(u™,ut)). Let the class of

estimators A to be considered be those of the form
(4.3.15) u”- X f(X'X), where f is positive, real valued and ¢1.
Def An estimator 'u' is said to be w-admissible if there does

not exist in A an estimator p’* such that Q(p™™)< atu™) ror all
(1,t) and for at least one (u,t), Q(n™™) is strictly less than
.O(u*).

Def An estimator is w-minimax it it minimizes

sup(y t)Q(k*;1,t) for all members of A.

-t "

Note that the usual estimator ( Xy, X5, ... X;) is w-admissible
(consider the special case where w|t = 1 ). Mcreover, ( X1, X5,

.. Xp) minimizes Max, . O, ie., is w-minimax. The Stein

estimators cannot be w-minimax for squared loss function, 0
since for w ,t = |, they are randomized estimates of Hy ;.:3:

In conciusion, there is no “paradox™ about Stein estimation. "&:
The free lunch is due to an apparent but artificial transferral of ﬁi
informat‘on between the dimensions as a result of an »
unrealistic assumption about the loss function. Shrinkage ?5
toward an arbitrary point (without prior inforination}, on the %

basis of a factor which is buiit up using information from
273 ;
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variables which are totally unrelated, which strikes most 22552
people, at (first glance, as inappropriate, is indeed :;f!;ﬁ
inapprapriate. | 3%”
When estimating, simultanecusly, the density of mosquitces Sﬁ‘:‘) E
in Houston, the average equatorial temperature of Mars, and the 80
gross national product of ancient Persia, we ought not believe ”
that some mathematical guirk demands that we multipiy our 'ﬁgﬁf
usual (separable) estimates by a finagle factor which :Eijgz
o artificially combines all three estimates. ‘1'_2:“.'},‘
1 The above study has been given as an example of the i:::l::a:':.
difficulties which attend us when we aitempt to make the world :ﬁ:}:"
conform to an idealized mathematical construction, instead of '.':.
the other way round. When the use of a particular criterion RS
function yields results which are completely contrary to our E'%E'j
intuitions, we should question the criterion function before '?~= '
disregarding our intuitions. At the end of the day, we may find Sg‘
that our intuitions were, indeed, wrong. The world is not flat, é::':;f:
naive perceptions notwithstanding. However, the flatness of the W
earth was not disproved by construction of an artificial '%?‘i. .
mathematical model, but rather by the construction of a model t::'
which explained real things with which the assumption of a flat “'
earth could not cope. 2
i
i
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Using Personal Computer Spreadsheets in

Statistical Planning and Analysis
Carl T. Russell
US Army Operational Test and Evaluation Agency
Falls Church, Virginia

ABSTRACT. Personal computer spreadsheets provide an easy-to-use tool for performing many
statistical co.aputations. Tﬁis paper describes examples of such computations. The first shows
how the standard approximations for binomial sample sizing from Natrella can be implemented
in a spreadsheet to produce flexible automatic tables. A second series of examples examines a
variety of exact calculations involving binomial coefficients. Other spreadsheet applications are

‘ briefly discussed. These examples show that spreadsheets serve as alternatives or suiplements
to published tables or traditional programming languages for many statistical problems.

1. INTRODUCTION. This is a simple paper. Its thesis is that commercial microcom-
puter spreadsheet software is the first place one should look for assistance with many routine
statistical computations. It was motivated by personal experience developing tabular displays,
especially specialized tabular displays of discrete probability distributions. This experience
showed that commercial microcomputer spreadsheet software (hereafter referred to as “spread-
sheets”) could be used quickly to implement versions of such probability tables. Little effort
produces spreadsheet templates which can duplicate voluminous standard tables. More impor-
tant, spreadsheets can produce custom interactive tables which provide quicker, more flexible
and more accurate answers than standard tables. Most of the paper is devoted to examples of
such probability tabulations, starting with an automated version of some standard binomial
approximations and meandering through several exact calculations involving binomial coeffi-
cients. Other actual and potential applications are discussed briefly.

Some familiarity with spreadsheet software is required to appreciate this paper. Most
important is realizing how easily formulas can be promulgated throughout an automated
spreadsheet. Once appropriate combinations of absolute and relative references are devised,
only a few formulas need be entered to generate a large, flexible table from a few input
parameters. Moreover, only the relevant portion of the table needs to be examined, fine tuned,
and printed.

2. ROUTINE BINOMIAL SAMPLE SIZING A LA NATRELLA. Natrella’s
Experimental Statistics' is used widely in the Army for binomial sample sizing. The approach
involves look-up from several tables based on an arcsine transformation. The theoretical basis
for the approximations used by Natrella is that if X successes are observed in N Bernoulli trials
with success probability p and f: x—+f(x) is an appropriate arcsine transformation, then Y=£(X)
has approximately normal distribution with p=arcsin(vp) and o2=1/(4N); that is, the variance of
Y does not depend on p. Natrella discusses four possibilities depending on whether there are
one or two populations, and on whether one- or two-sided hypotheses are appropriate. That is,
there are one- and two-sided hypotheses in each of two cases: one population compared against
a standard (success probability po) and two populations compared against each other (success
probabilities py and p2). In the one-population case,

2VN(Y-po) is approximately normal with p.=2*fﬁ[arcsin\/p_ - arcsinVpo] and o2=1,
and in the two-population case,
2VN(Y;-Y) is approximately normal with p=2VN[arcsinVp, - arcsinVp,] and o2=2,

Writing down expressions for type I error (o) and type II error (§) and solving for N in
terms of the percentiles of the standard normal distribution, z.=d(x), gives the formulas used

1 National Bureau of Standards Handbook 91, 1963, US Government Printing Offica, soctions 8-1.4, 8.1.5, 8.2.4. This handbook was orig-
inally developed for imited distnwtion as US Amy Ordnance Pamphiois ORDP 20-110 through 20-114, It is now supplemented and to
a large axtent replacad by DARCOM PAMPHLET No. 708-103, December 1983, which discusses binomial sample sizing in secton 8.3,
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One-Sided Two-Sided
o Hi1: pspa ve Kiv: p>po Hi2: p=po v8 Kiz: p#po
p ?'I (Z1at2yp) 2 N = (Zazt+21p) ®
opulation 4(arcsln~lp arcsinypo)? “4(arcsinvVp-arcsinVpo) 2
Hazs: p1Spa v8 Kai: pi>p2 Haz2: pi1=pa v8 Kaa: pi#pa
Two 2
N {Z1at219) ? Na (Z1o2+Z1.p)
Populations 2(arcsinvpi-arcsinvpy)? 2(arcsinVpi-arcsinyps)?
Figure 1. Binomial Sample Sizing Formulas Used by Natrella.

in Natrella’s tables (see Figure 1), Implementing these formulas in a spreadsheet is easy. Each
numerator in the sample size formula, O%m(Z1.g+21.p)% Or 8w (21.02+21.p)%, depends only on o and B,
and each denominator, di=4(arcsinvp-arcsin Po)? or di=4(arcsinVp 1-arcsln‘5:)’ depends only on
the parameters specified by simple null and alternative hypotheses. Interactive spreadsheet
tables for hinomial sample sizing can be built by providing a data entry area for choosing o,
entering the difference in parameters to be detected (A=p-po or A=ps-p2), and specifying the
range of parameters to be examined. Figure 2 assumes that such a data entry area has speci-
fied—in addition to A and o—an initial probability value pw and a value A to be used to incre-
ment o for a fixed number of lines. Both o and B require @, which is not available as a stan-
dard spreadsheet function. A macro could probably be written to compute @, but a simpler
approach is to limit choices for o to a few values and let “confidence levels” 1-p vary across
fixed standard values, That was done in the example of Figure 2 and the actual spreadsheet
implementation in Figure 3. The original motivation for the spreadsheet in Figure 3 was to
help an evaluator assess a resource requirement for an operational test. An analyst was
arguing on the basis of Natrella’s formu-

las that in order to have 80% conﬁd;pce 5‘13' P

of detecting a 10 probability point differ- y D8
ence in kill probabilities between two P L d l!loqualrod Sample é‘ ‘2
missile systems, about 115 missiles of Poo Pz+A |d(pipa)| 20072 | .., | 284/
each type would be required—versus the|| Po+h | Pz+A [d(pupe)| 26:%d2 | ... | 28%/d?
100 missiles of each type which were (W’*)""' P2+A d(ppa| 2872 | .. | 28:d?
available. This claim was based on two ' ' : ' : :

“agssumptions”; an assumption that the

difference to be detacted was between Figure 2. Example of Spreadsheet Template for
_ _ : Natrella’s Sample Size Formula—Two-Sided Test
p2=0.85 and pi=0.95 and an assumption Between Two Observed Proportions.

that 10% to 15% of any firings would be
“no tested.” The sensitivity of binomial sample sizes to assumptions about the underlying prob-
abilities was not clear to the evaluator. Once the table in Figure 3 was produced, the evaluator
could see that since the underlying probabilities could just as well be p.=0.76 and pi=0.85 or
even p2=0.65 and p1=0.75, obtaining a few more expensive missiles was not something to fall on
his sword over. The simple capability to produce a full table instead of a few numbers provided
a convincing test planning tool,

3. IMPLEMENTING EXACT BINOMIAL TABLES. At one time or another, nearly
every applied statistician hus attempted to program exact calculations for probabilities based
on binomial coefficients. Using FORTRAN or BASIC, potentinl underflow and overflow must be
carefully considered to avoid silly answers. Using & spreadsheet, calculations more accurate
than standard tables can be obtained with very little care. Figure 4 shows the key binomial
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. TWO-SIDED HYPOTHESIS TEST FOR DIFFERENCE BETWEEN TWO OBSERVED PROPORTIONS X Vot
SAMFLE SIZ2E REQUIREMENTS FROM NATRELLA 8-2.4.)1, PAGES 8-)8 & 8-1¢ '. '
8K
Sample Sizex2s(delta)en2/des2 o),
where deltarz(l-alphas2)+z(l-betal, hpﬁ
v d=2¢ {arcainigqrt(P'))~arcginlegqrt(P''))), .of,e
and z[k)=kth percentile of the standard normal. ‘,?2,,:
g, [ I U, mm————— e o o o 2 e
TTTT T Entar: Starting Plis  0.450 Diff for P''®P'4Diff 1& 0,100 '@
Increment for F' 15 0.010 oy
Significance Leve)l alpha (use: .01, .05, .1 or .2) is 0. 10 "‘2!:‘
alpha used is .10 a(l-alphars2} 18 1.65 '5:02
\
Deltar 3,97  2.20  £.93  2.49  2.17  1.90  1.68 b
Con{ (l1-beta):= 0.99 0.98 0.90 0.80 0.70 0.60 0.%50 Qﬁé-
ey
Sample Size EKequired to Obtain Prescribed Corfidence : E
P P 4 That P' Differs From P'' at Sigmificance Level alpha )
V3
0.450 0,550 0.200 786 540 427 30y 235 180 135 Q."D:t
0.450 0.%60 0.200 786 540 427 309 235 180 13% bl
0,470 0.570 0.200 76% 53¢ 427 308 238 180 135 ! b'
0.480 0,580 0.20) 783 538 426 308 234 178 13¢ :;'..ij
0.490 0.500 0.201 781 836 425 307 233 178 13, DU
0.500 0.600 0,201 778 534 423 308 233 178 134 ')
0.510 0,610 0.20% 778 B2¢ 421 304 232 177 132 Vi
0.820 0.620 0.7202 771 820 419 303 230 176 133 Ol
: 0.8530 0,630 0.203 766 526 416 30} 229 178 132 e
T 0.540 0.640 0.204 760 522 413 289 227 174 131 '(f.‘
0.%30 0.650 0,205 754 518 410 298 225 173 130 N
K 0.560 0,660 0.205 748 513 40¢ 204 223 171 129 A
‘ 0.%70 0,670 0.206 740 808 402 201 221 170 127 ety
0.580 0.680 0.208 82 803 ips 288 219 168 126 |
0.890 0,000 0.209 724 487 383 284 218 166 125 “ﬁl
. 0.800 0.700 0.210 718 401 38 281 214 164 123 “p'L
0.610 0,710 0.212 705 484 283 277 211 161 121 :a":‘«
0.620 0,720 0.213 604 477 377 273 207 159 120 \a*}
0.630 0,730 0.218% 883 469 371 268 204 186 11 f
Q.640 0.740 0.217 671 461 388 264 20} 154 116
0.850 0.750 0.219 859 452 )1} 259 197 181 113
0.660 0.760 0.221 840 443 as) 283 103 148 11!
‘ 0.870 0.770 0.224 632 434 343 248 189 148 109
0.680 0,780 0.226 617 424 336 242 188 141 106
0.690 0.700 0.220 602 414 327 237 180 138 104
) 0,700 0,800 0,232 587 403 319 230 175 134 10}
0.710 0,810 0.235 570 392 310 224 170 131 03
©.720 0,820 0.23¢ 553 380 301 217 165 127 0%
0.73C 0.830 0.243 535 368 291 210 160 122 oz
0,740 0.840 0.247 517 385 281 203 15% 118 89
0.750 0.650 0.2%2 108 342 271 196 149 114 86
. 0.760 0.860 0.287 478 328 280 188 143 110 82
0,770 0.870 0.2083 458 314 249 180 137 10% 79
0.780 0,880 0.2069 437 300 237 172 131 100 7%
0.700 0.800 0.276 415 28% 226 163 124 @5 T2
0.800 0.000 0.284 392 209 213 154 117 90 8e
0.810 0.910 0.203 36¢ 283 201 148 110 a5 64
0.820 0,920 0.303 345 237 187 13% 103 79 60
0.830 0.930 0.314 319 219 174 12¢ o6 73 35
0.840 0.940 0.328 293 202 160 114 -1:] &7 31
0.85%0 0.050 0.344 268 183 148 10% 890 61 46
0.860 0.960 0¢.384 238 104 130 o4 71 55 41
0.870 0.070 0.390 208 143 113 a2 63 48 36
0.880 0.980 ©0.424 176 121 06 60 t3 41 3l
€.890 0.000 0.476 140 o6 e ] 42 32 24

Figure 3. Exampls Based on the Natrella Formulas.
Printout of an Enable Spreadsheet on a Zenith 248.)

27¢

I\ , TN R A 'l e
i e R R 4" N - TR TLY L LT | » LAY AT ARY v ")'Y » "’P" "}V’T "‘&'ﬁ;ﬁ:“.\ -\"-\‘. ‘-:.\‘. 1
K ‘: o, ‘.’. o '(w ‘:QQ‘ ok : {‘\Wm A ‘~ %m ' \.‘ ‘* ) . ‘3. - ‘! “‘ t‘“‘.‘ ‘,‘."
\ 1 h e b \"' ! W ; » \ ' Eu'é:ip . Ml j 0 i"..k' ) OO W
:{: ..:: vnn !‘iln‘ ) N ™ u\ : :;:.ﬁ Mﬁmﬁ ‘-b n‘p\;i? a':'.. o aM > L i?s‘-\-é u‘:‘ ?-‘3{\1 L) ‘-\ 7 \u' oo J\@:‘-ﬁ*-" ’




. ]

: 3

q ]

[ )

3 W

! [ WOl

Koy Relationship: ( N / N Y oo N ».

‘ (k+1 ) ( Kk ) - 'E;E' .;.‘;

| A B c D E RV K o

| 1] N | Initialp| Deltap .:::v

: 2 [ N) $BS1 D2+$C$1 D2 | £2 it

‘ 3] & Nk | \g/ 1-D2 1-§2 D3 | Ed o'

4 | W
6] o A$1-AS 1 $C5'DS2""$AS'DS3"BS | .., D5 | Es R

4 6 [ Ab+1 AS1-A6 | C5'B5/AB | $CE* DS AL D3I+ BE J5+D86 | KS+ED :::,

. 7| AGe1 | SASI-A7 | CO'BU/A? | SCTDS2NSATIDSINET | . JB4D7 | KO+ET o

°; I 1 | . R s

I Figure 4. Spreadsheet Template for Exact Binomial Tables. ;:gr

| 'y

' relationship and formulas which generate tables of both individual and cumulative binomial %:6:

probabilities. Seript type in Figure 4 indicates a data entry area while jray type indicates :»:\"f

) formulas obtained by “copying,” which can be extended at will, The notation ia Figure 4 is the it

standard from Lotus 1-2-3 with columns labeled by letters and rows by numerals and with “$”

_ indicating an absolute rather than the default relative reference. In Figure 4, columns D-H N
o contain individual probabilities while columns J-M contain the cumulative probabilities. f ;_-
g Column C—which contains the binomial coefficients—nerds to be calculated but is not of direct .

¥ interest; its display would normally be suppressed. Likewise, formatting or logic tricks can be A
Ly used to suppress printing many values very close to zero rr one, as in Figure 5. &Q \
1 o
Figure 5 shows & portion of a large table of binomial probabilities generated via a template ’ ‘t

‘ similar to that of Figure 4. The only substantial difference is that Figure 5 displays nine values e

! for p vice five in Figure 4, and the p-values in Figure 5 are controlled by a center value and a ! af
» ) delta in both directions vice a siarting value and a delta in Figure 4. The fact that all cumula- o

tive columns end in 1,0000000 confirms substantial numerical accuracy, Underlying spread- 5:»‘:.
sheet calculations are typically performed to 14 significant figure accuracy, so multiplication of l
the very large binomial coefficients with the very small products of success and failure proba- - M

Lilities is accurate to nearly 14 significant figures, and only very tiny probabilities are lost to
, underflow when cumulated. Since standard tables typically display only 7-place accuracy—
| already more than needed for practical purposes—accuracy of spreadsheet calculations
s presents no problem, Msmory and computing time is a greater concern. On the standard Apple
Macintosh SE where Figure 5 was calculated and printed (using Microsoft Excel), leading or
recalculating the spreadsheet takes several minutes, the spreadsheet loaded into Excel takes
. approximately 760 kilobytes of memory, and storage of the spreadsheet takes more than 500
kilobytes on disk, (A similar spreadsheet implemented in Enable on a Zenith 248 with 640 kilo-

bytes of RAM runs out of memory when N is slightly larger than 100.)

4, RETHINKING TABULATION OF DISCRETE PROBABILITIES., For practical
purposes, the spreadsheet template in Figure 4 (implemented in Figure 6), replaces all stan-
dard binomial tables. Templates for other discrete distributions requiring binomial coefficients

s d
S

tﬂ.

are also easy to implament, both for standard distributions such as the hypergeometric distri- ::-"'
N bution and for more unusual distributions such as that tabulated in Figure 6. Unlike previous \j}«.
. tables in this paper, Figure 6 represents a rethinking of probability tabulation rather than a {:.-"*
straightforward translation of traditional tables into an automated spreadsheet, 1t shows the )'.I
screon image of an Fxcel spreadsheet on a Macintosh, formatted for ease of interactive sample Y
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sizing or inference. Only two val- eoraali =100 -
uas for p are shown since on]y two 7 22[200[0.110] 0.08180 0,00213]0, 5818947 0,0048179]0.6194083(0.002009| 309
are typically needed for sample | | 3| H[wo|oii| oot 5owealomsiiis oomaaslo.issessiocostie] S9N
sizing or determining confidence | | 21 BiTo(c m| oanzs boret|ossaras oosamealozssmst ocamsats| ¢
intervals. Standard tabulated val- 27| 27|200/0.153] 0.06499 0.01082|0,7003548 0,0030021 | 0.21 96455/0.056258%|  74%
ues are supplemented by several 20| 3o[wio|o.1%8] oadbn 0.RER4|n.ea1isd 0t 15anos|o.) 1TeTe2|o000NIZS] 4o
eful arithmetic results, and the | | 5] solimlein| oast? ooso|osme! o126aet|oores|oizoms| 18
data entry area s arranged so| |5 imiis) sl SEeCemen oiskm Cieme i
that it gl\\;ays TOINAING ON SCTEON, | | 2a) a0]198]0.104] G00iHE 0.407C8|0 012084 A1 EENTS|004PseTe|01eReT| 7o
The underlying distribution comes .
from a series of Bernoulli trials K Préh e[ 0130 "~ O.160 "0.1200600 /800600 5. £30000]5 000803(0.13000,
where R rounds are fired at T tar- o ; »
gets (TSR) until either all rounds g - ¥ .
are expended or all targets are Figure 8. Example of a Rethought Spreadshoet.
killed. When T=R the distribution

is binomial, and when T«<R it approximates the negative binomial distribution. The R+1

possible outcomes (indexed by M) are as follows:

M=0: Prob{T=0 targets killed with R=R roundu}-( 2 ) (1-p)R

M1 Prob{Tu1 targets kiled with ReR roundsj= P ) p(t-py™

Mst.  Prob{T=t targsts killad with RaR rounds}= (R )poappee

M-‘!".-‘1 Prob{T=T-1 targets klllod with RuH rounds}= ( TR1 ) pT(4 p)n T

M=T:  Prob{TT targets killad with R=R rounds}-( ? ) pT(1-p)RT -( T_‘: )p"(1 p)RT
MaT41: Prob{T=T targets killed with R=R-1 rounds}= ( ’; 'f ) pT(1-p)RT!

M=T+k: Prob{T=T targets killed with ReR-k rounds}= (RT";) pTA(1-p)aTh

M-F;:' Prob{T=T targets klllod with R=T rounds)-( $ : ) p’

Since the data entry area and column labels at the bottom of the screen do not scroll with the

body of the table, parameters can be changed easily and the results observed -immediately.

Figure 7. 80% Confidence Interval for T=26,

From a sample sizing viewpoint,
the screen in Figure 6 shows that
with Tw=30 targets and R=200
rounds, observed kill proportions
near 0.15 will produce 80% confi-
dence intervals somewhat less
than 0.1 in length., Once data are
collected, the same spreadsheet
can be used to determine confi-
dence intervals. Figure 7 shows
that observing 26 kills when Tw30
and R=200 yields (0.1044,0.1603)
as an B0% confiderice interval.
Alternatively, the same spread-
sheet could be used to investigate
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other sample sizes. Figure 8 shiows SRS § o rnovil Firings—100

that T~11 and R~74 provide the | ¥y ey sens sl e emmleamloas

approximate sample size required
to detect a 0.1 difference in kill
probabilities with 80% confidence,
Although less than 40 rows have
been displayed in Figures 6-8, the
spreadsheet was laid out with 100
rows for flexibility (more could be
obtained by copying rows down-
ward if necessary). Since this
spreadsheet i8 much more
compact and requires fewer EERENrT R B
demanding calculations than a full Figure 8, Sample Size Naaded to Detect Ap-o 10.
table like that of Figure 5, it
recalculates much faster (less than 10 seconds). Thus the iterative fiddling required to obtain
results such as those in Figures 7 and 8 is quite feasible,

\ 5. OTHER ACTUAL AND POTENTIAL APPLICATIONS. Use of spreadsheets for
\ statistical calculations is not limited to calculation of probability tables. In particular, spread-
\ sheets are useful in conjunction with other programs which perform statistical analyses,
Arithmetic operations are frequently required to understand, interpret, and present the results
of analyses performed using standard statistical packages. Spreadsheets can reduce the
manual labor involved with such operations without requiring specialized programming, For
example, SAS Least Squares Means (LSM's) provide representations for various marginal
means as if the underlying experimental design had been balanced, SAS can calculate LSM's
for any effect in an underlying model, but cannot calculate LSM's for any effect not in a model,
Simple but tedious arithmetic can be used to calculate internal values from margine for
presentation. If more than one or two such calculations is to be done, writing a spreadsheet
template to do them pays off, Similarly, n spreadsheet can provide a convenient way of
translating back and forth between estimates obtained on a transformed variable and more
easily understood corresponding estimates on the untransformed variable—for instance,
v translating results of an analysis of log{Y+0.02) back into statements about (p-po)/po, where
Expeatater{l0g( Y+0.02)]=log(p+0.02), Still another related application was suggested following
presentation of this paper by a statistician who routinely uses spreadsheets in conjunction
with other procedures to perform jackknifing, Finally, since spreadsheets read and write files
consisting of tab delineated fields, automnated exchange of data with other computer programs
can be easy. Spreadsheet capabilities for editing and rearranging data make them a good
preprovessor for specialized statistical packages like MacSpin, which have less flexible data
entry capabilities. Additional capabilities of most modern spreadsheets include macro language
capabilities, which make nonstandard formulas and calculations readily available, and
integrated graphics capabilities, some of which are quite good. Every statistician having access
to a microcomputer should understand the kinds of things spreadsheets can do to make life
. easier, both as stand-alone tools and as supplements to other tools. The convenient power of
microcomputer spreadsheets provides computational tools which should be the first place one
looks for assistance with routine statistical calculations.
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